/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include #include #include #include "srsran/common/crash_handler.h" #include "srsran/common/gen_mch_tables.h" #include "srsran/phy/io/filesink.h" #include "srsran/srsran.h" #define ENABLE_AGC_DEFAULT #ifndef DISABLE_RF #include "srsran/phy/rf/rf.h" #include "srsran/phy/rf/rf_utils.h" cell_search_cfg_t cell_detect_config = {.max_frames_pbch = SRSRAN_DEFAULT_MAX_FRAMES_PBCH, .max_frames_pss = SRSRAN_DEFAULT_MAX_FRAMES_PSS, .nof_valid_pss_frames = SRSRAN_DEFAULT_NOF_VALID_PSS_FRAMES, .init_agc = 0, .force_tdd = false}; #else #pragma message "Compiling pdsch_ue with no RF support" #endif //#define STDOUT_COMPACT #ifdef ENABLE_GUI #include "srsgui/srsgui.h" void init_plots(); pthread_t plot_thread; sem_t plot_sem; uint32_t plot_sf_idx = 0; bool plot_track = true; bool enable_mbsfn_plot = false; #endif /* ENABLE_GUI */ char* output_file_name; //#define PRINT_CHANGE_SCHEDULING //#define CORRECT_SAMPLE_OFFSET /********************************************************************** * Program arguments processing ***********************************************************************/ typedef struct { int nof_subframes; int cpu_affinity; bool disable_plots; bool disable_plots_except_constellation; bool disable_cfo; uint32_t time_offset; int force_N_id_2; uint16_t rnti; char* input_file_name; int file_offset_time; float file_offset_freq; uint32_t file_nof_prb; uint32_t file_nof_ports; uint32_t file_cell_id; bool enable_cfo_ref; char* estimator_alg; char* rf_dev; char* rf_args; uint32_t rf_nof_rx_ant; double rf_freq; float rf_gain; int net_port; char* net_address; int net_port_signal; char* net_address_signal; int decimate; int32_t mbsfn_area_id; uint8_t non_mbsfn_region; uint8_t mbsfn_sf_mask; int tdd_special_sf; int sf_config; int verbose; bool enable_256qam; bool use_standard_lte_rate; } prog_args_t; void args_default(prog_args_t* args) { args->disable_plots = false; args->disable_plots_except_constellation = false; args->nof_subframes = -1; args->rnti = SRSRAN_SIRNTI; args->force_N_id_2 = -1; // Pick the best args->tdd_special_sf = -1; args->sf_config = -1; args->input_file_name = NULL; args->disable_cfo = false; args->time_offset = 0; args->file_nof_prb = 25; args->file_nof_ports = 1; args->file_cell_id = 0; args->file_offset_time = 0; args->file_offset_freq = 0; args->rf_dev = ""; args->rf_args = ""; args->rf_freq = -1.0; args->rf_nof_rx_ant = 1; args->enable_cfo_ref = false; args->estimator_alg = "interpolate"; args->enable_256qam = false; #ifdef ENABLE_AGC_DEFAULT args->rf_gain = -1.0; #else args->rf_gain = 50.0; #endif args->net_port = -1; args->net_address = "127.0.0.1"; args->net_port_signal = -1; args->net_address_signal = "127.0.0.1"; args->decimate = 0; args->cpu_affinity = -1; args->mbsfn_area_id = -1; args->non_mbsfn_region = 2; args->mbsfn_sf_mask = 32; } void usage(prog_args_t* args, char* prog) { printf("Usage: %s [adgpPoOcildFRDnruMNvTG] -f rx_frequency (in Hz) | -i input_file\n", prog); #ifndef DISABLE_RF printf("\t-I RF dev [Default %s]\n", args->rf_dev); printf("\t-a RF args [Default %s]\n", args->rf_args); printf("\t-A Number of RX antennas [Default %d]\n", args->rf_nof_rx_ant); #ifdef ENABLE_AGC_DEFAULT printf("\t-g RF fix RX gain [Default AGC]\n"); #else printf("\t-g Set RX gain [Default %.1f dB]\n", args->rf_gain); #endif #else printf("\t RF is disabled.\n"); #endif printf("\t-i input_file [Default use RF board]\n"); printf("\t-o offset frequency correction (in Hz) for input file [Default %.1f Hz]\n", args->file_offset_freq); printf("\t-O offset samples for input file [Default %d]\n", args->file_offset_time); printf("\t-p nof_prb for input file [Default %d]\n", args->file_nof_prb); printf("\t-P nof_ports for input file [Default %d]\n", args->file_nof_ports); printf("\t-c cell_id for input file [Default %d]\n", args->file_cell_id); printf("\t-r RNTI in Hex [Default 0x%x]\n", args->rnti); printf("\t-l Force N_id_2 [Default best]\n"); printf("\t-C Disable CFO correction [Default %s]\n", args->disable_cfo ? "Disabled" : "Enabled"); printf("\t-F Enable RS-based CFO correction [Default %s]\n", !args->enable_cfo_ref ? "Disabled" : "Enabled"); printf("\t-R Channel estimates algorithm (average, interpolate, wiener) [Default %s]\n", args->estimator_alg); printf("\t-t Add time offset [Default %d]\n", args->time_offset); printf("\t-T Set TDD special subframe configuration [Default %d]\n", args->tdd_special_sf); printf("\t-G Set TDD uplink/downlink configuration [Default %d]\n", args->sf_config); #ifdef ENABLE_GUI printf("\t-d disable plots [Default enabled]\n"); printf("\t-D disable all but constellation plots [Default enabled]\n"); #else /* ENABLE_GUI */ printf("\t plots are disabled. Graphics library not available\n"); #endif /* ENABLE_GUI */ printf("\t-y set the cpu affinity mask [Default %d] \n ", args->cpu_affinity); printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes); printf("\t-s remote UDP port to send input signal (-1 does nothing with it) [Default %d]\n", args->net_port_signal); printf("\t-S remote UDP address to send input signal [Default %s]\n", args->net_address_signal); printf("\t-u remote TCP port to send data (-1 does nothing with it) [Default %d]\n", args->net_port); printf("\t-U remote TCP address to send data [Default %s]\n", args->net_address); printf("\t-M MBSFN area id [Default %d]\n", args->mbsfn_area_id); printf("\t-N Non-MBSFN region [Default %d]\n", args->non_mbsfn_region); printf("\t-q Enable/Disable 256QAM modulation (default %s)\n", args->enable_256qam ? "enabled" : "disabled"); printf("\t-Q Use standard LTE sample rates (default %s)\n", args->use_standard_lte_rate ? "enabled" : "disabled"); printf("\t-v [set srsran_verbose to debug, default none]\n"); } void parse_args(prog_args_t* args, int argc, char** argv) { int opt; args_default(args); while ((opt = getopt(argc, argv, "adAogliIpPcOCtdDFRqnvrfuUsSZyWMNBTGQ")) != -1) { switch (opt) { case 'i': args->input_file_name = argv[optind]; break; case 'p': args->file_nof_prb = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'P': args->file_nof_ports = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'o': args->file_offset_freq = strtof(argv[optind], NULL); break; case 'O': args->file_offset_time = (int)strtol(argv[optind], NULL, 10); break; case 'c': args->file_cell_id = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'I': args->rf_dev = argv[optind]; break; case 'a': args->rf_args = argv[optind]; break; case 'A': args->rf_nof_rx_ant = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'g': args->rf_gain = strtof(argv[optind], NULL); break; case 'C': args->disable_cfo = true; break; case 'F': args->enable_cfo_ref = true; break; case 'R': args->estimator_alg = argv[optind]; break; case 't': args->time_offset = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'f': args->rf_freq = strtod(argv[optind], NULL); break; case 'T': args->tdd_special_sf = (int)strtol(argv[optind], NULL, 10); break; case 'G': args->sf_config = (int)strtol(argv[optind], NULL, 10); break; case 'n': args->nof_subframes = (int)strtol(argv[optind], NULL, 10); break; case 'r': args->rnti = strtol(argv[optind], NULL, 16); break; case 'l': args->force_N_id_2 = (int)strtol(argv[optind], NULL, 10); break; case 'u': args->net_port = (int)strtol(argv[optind], NULL, 10); break; case 'U': args->net_address = argv[optind]; break; case 's': args->net_port_signal = (int)strtol(argv[optind], NULL, 10); break; case 'S': args->net_address_signal = argv[optind]; break; case 'd': args->disable_plots = true; break; case 'D': args->disable_plots_except_constellation = true; break; case 'v': increase_srsran_verbose_level(); args->verbose = get_srsran_verbose_level(); break; case 'Z': args->decimate = (int)strtol(argv[optind], NULL, 10); break; case 'y': args->cpu_affinity = (int)strtol(argv[optind], NULL, 10); break; case 'W': output_file_name = argv[optind]; break; case 'M': args->mbsfn_area_id = (int32_t)strtol(argv[optind], NULL, 10); break; case 'N': args->non_mbsfn_region = (uint8_t)strtol(argv[optind], NULL, 10); break; case 'B': args->mbsfn_sf_mask = (uint8_t)strtol(argv[optind], NULL, 10); break; case 'q': args->enable_256qam ^= true; break; case 'Q': args->use_standard_lte_rate ^= true; break; default: usage(args, argv[0]); exit(-1); } } if (args->rf_freq < 0 && args->input_file_name == NULL) { usage(args, argv[0]); exit(-1); } } /**********************************************************************/ uint8_t* data[SRSRAN_MAX_CODEWORDS]; bool go_exit = false; void sig_int_handler(int signo) { printf("SIGINT received. Exiting...\n"); if (signo == SIGINT) { go_exit = true; } else if (signo == SIGSEGV) { exit(1); } } cf_t* sf_buffer[SRSRAN_MAX_PORTS] = {NULL}; #ifndef DISABLE_RF int srsran_rf_recv_wrapper(void* h, cf_t* data_[SRSRAN_MAX_PORTS], uint32_t nsamples, srsran_timestamp_t* t) { DEBUG(" ---- Receive %d samples ----", nsamples); void* ptr[SRSRAN_MAX_PORTS]; for (int i = 0; i < SRSRAN_MAX_PORTS; i++) { ptr[i] = data_[i]; } return srsran_rf_recv_with_time_multi(h, ptr, nsamples, true, NULL, NULL); } static SRSRAN_AGC_CALLBACK(srsran_rf_set_rx_gain_th_wrapper_) { srsran_rf_set_rx_gain_th((srsran_rf_t*)h, gain_db); } #endif extern float mean_exec_time; enum receiver_state { DECODE_MIB, DECODE_PDSCH } state; srsran_cell_t cell; srsran_ue_dl_t ue_dl; srsran_ue_dl_cfg_t ue_dl_cfg; srsran_dl_sf_cfg_t dl_sf; srsran_pdsch_cfg_t pdsch_cfg; srsran_ue_sync_t ue_sync; prog_args_t prog_args; uint32_t pkt_errors = 0, pkt_total = 0, nof_detected = 0, pmch_pkt_errors = 0, pmch_pkt_total = 0, nof_trials = 0; srsran_netsink_t net_sink, net_sink_signal; /* Useful macros for printing lines which will disappear */ #define PRINT_LINE_INIT() \ int this_nof_lines = 0; \ static int prev_nof_lines = 0 #define PRINT_LINE(_fmt, ...) \ printf("\033[K" _fmt "\n", ##__VA_ARGS__); \ this_nof_lines++ #define PRINT_LINE_RESET_CURSOR() \ printf("\033[%dA", this_nof_lines); \ prev_nof_lines = this_nof_lines #define PRINT_LINE_ADVANCE_CURSOR() printf("\033[%dB", prev_nof_lines + 1) int main(int argc, char** argv) { int ret; #ifndef DISABLE_RF srsran_rf_t rf; #endif srsran_debug_handle_crash(argc, argv); parse_args(&prog_args, argc, argv); srsran_use_standard_symbol_size(prog_args.use_standard_lte_rate); #ifdef ENABLE_GUI if (prog_args.mbsfn_area_id > -1) { enable_mbsfn_plot = true; } #endif /* ENABLE_GUI */ for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { data[i] = srsran_vec_u8_malloc(2000 * 8); if (!data[i]) { ERROR("Allocating data"); go_exit = true; } } uint8_t mch_table[10]; bzero(&mch_table[0], sizeof(uint8_t) * 10); if (prog_args.mbsfn_area_id > -1) { generate_mcch_table(mch_table, prog_args.mbsfn_sf_mask); } if (prog_args.cpu_affinity > -1) { cpu_set_t cpuset; pthread_t thread; thread = pthread_self(); for (int i = 0; i < 8; i++) { if (((prog_args.cpu_affinity >> i) & 0x01) == 1) { printf("Setting pdsch_ue with affinity to core %d\n", i); CPU_SET((size_t)i, &cpuset); } if (pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset)) { ERROR("Error setting main thread affinity to %d", prog_args.cpu_affinity); exit(-1); } } } if (prog_args.net_port > 0) { if (srsran_netsink_init(&net_sink, prog_args.net_address, prog_args.net_port, SRSRAN_NETSINK_UDP)) { ERROR("Error initiating UDP socket to %s:%d", prog_args.net_address, prog_args.net_port); exit(-1); } srsran_netsink_set_nonblocking(&net_sink); } if (prog_args.net_port_signal > 0) { if (srsran_netsink_init( &net_sink_signal, prog_args.net_address_signal, prog_args.net_port_signal, SRSRAN_NETSINK_UDP)) { ERROR("Error initiating UDP socket to %s:%d", prog_args.net_address_signal, prog_args.net_port_signal); exit(-1); } srsran_netsink_set_nonblocking(&net_sink_signal); } float search_cell_cfo = 0; #ifndef DISABLE_RF if (!prog_args.input_file_name) { printf("Opening RF device with %d RX antennas...\n", prog_args.rf_nof_rx_ant); if (srsran_rf_open_devname(&rf, prog_args.rf_dev, prog_args.rf_args, prog_args.rf_nof_rx_ant)) { fprintf(stderr, "Error opening rf\n"); exit(-1); } /* Set receiver gain */ if (prog_args.rf_gain > 0) { srsran_rf_set_rx_gain(&rf, prog_args.rf_gain); } else { printf("Starting AGC thread...\n"); if (srsran_rf_start_gain_thread(&rf, false)) { ERROR("Error opening rf"); exit(-1); } srsran_rf_set_rx_gain(&rf, srsran_rf_get_rx_gain(&rf)); cell_detect_config.init_agc = srsran_rf_get_rx_gain(&rf); } sigset_t sigset; sigemptyset(&sigset); sigaddset(&sigset, SIGINT); sigprocmask(SIG_UNBLOCK, &sigset, NULL); signal(SIGINT, sig_int_handler); /* set receiver frequency */ printf("Tunning receiver to %.3f MHz\n", (prog_args.rf_freq + prog_args.file_offset_freq) / 1000000); srsran_rf_set_rx_freq(&rf, prog_args.rf_nof_rx_ant, prog_args.rf_freq + prog_args.file_offset_freq); uint32_t ntrial = 0; do { ret = rf_search_and_decode_mib( &rf, prog_args.rf_nof_rx_ant, &cell_detect_config, prog_args.force_N_id_2, &cell, &search_cell_cfo); if (ret < 0) { ERROR("Error searching for cell"); exit(-1); } else if (ret == 0 && !go_exit) { printf("Cell not found after %d trials. Trying again (Press Ctrl+C to exit)\n", ntrial++); } } while (ret == 0 && !go_exit); if (go_exit) { srsran_rf_close(&rf); exit(0); } /* set sampling frequency */ int srate = srsran_sampling_freq_hz(cell.nof_prb); if (srate != -1) { printf("Setting sampling rate %.2f MHz\n", (float)srate / 1000000); float srate_rf = srsran_rf_set_rx_srate(&rf, (double)srate); if (srate_rf != srate) { ERROR("Could not set sampling rate"); exit(-1); } } else { ERROR("Invalid number of PRB %d", cell.nof_prb); exit(-1); } INFO("Stopping RF and flushing buffer...\r"); } #endif /* If reading from file, go straight to PDSCH decoding. Otherwise, decode MIB first */ if (prog_args.input_file_name) { /* preset cell configuration */ cell.id = prog_args.file_cell_id; cell.cp = SRSRAN_CP_NORM; cell.phich_length = SRSRAN_PHICH_NORM; cell.phich_resources = SRSRAN_PHICH_R_1; cell.nof_ports = prog_args.file_nof_ports; cell.nof_prb = prog_args.file_nof_prb; if (srsran_ue_sync_init_file_multi(&ue_sync, prog_args.file_nof_prb, prog_args.input_file_name, prog_args.file_offset_time, prog_args.file_offset_freq, prog_args.rf_nof_rx_ant)) { ERROR("Error initiating ue_sync"); exit(-1); } } else { #ifndef DISABLE_RF int decimate = 0; if (prog_args.decimate) { if (prog_args.decimate > 4 || prog_args.decimate < 0) { printf("Invalid decimation factor, setting to 1 \n"); } else { decimate = prog_args.decimate; } } if (srsran_ue_sync_init_multi_decim(&ue_sync, cell.nof_prb, cell.id == 1000, srsran_rf_recv_wrapper, prog_args.rf_nof_rx_ant, (void*)&rf, decimate)) { ERROR("Error initiating ue_sync"); exit(-1); } if (srsran_ue_sync_set_cell(&ue_sync, cell)) { ERROR("Error initiating ue_sync"); exit(-1); } #endif } uint32_t max_num_samples = 3 * SRSRAN_SF_LEN_PRB(cell.nof_prb); /// Length in complex samples for (int i = 0; i < prog_args.rf_nof_rx_ant; i++) { sf_buffer[i] = srsran_vec_cf_malloc(max_num_samples); } srsran_ue_mib_t ue_mib; if (srsran_ue_mib_init(&ue_mib, sf_buffer[0], cell.nof_prb)) { ERROR("Error initaiting UE MIB decoder"); exit(-1); } if (srsran_ue_mib_set_cell(&ue_mib, cell)) { ERROR("Error initaiting UE MIB decoder"); exit(-1); } if (srsran_ue_dl_init(&ue_dl, sf_buffer, cell.nof_prb, prog_args.rf_nof_rx_ant)) { ERROR("Error initiating UE downlink processing module"); exit(-1); } if (srsran_ue_dl_set_cell(&ue_dl, cell)) { ERROR("Error initiating UE downlink processing module"); exit(-1); } // Disable CP based CFO estimation during find ue_sync.cfo_current_value = search_cell_cfo / 15000; ue_sync.cfo_is_copied = true; ue_sync.cfo_correct_enable_find = true; srsran_sync_set_cfo_cp_enable(&ue_sync.sfind, false, 0); ZERO_OBJECT(ue_dl_cfg); ZERO_OBJECT(dl_sf); ZERO_OBJECT(pdsch_cfg); pdsch_cfg.meas_evm_en = true; if (cell.frame_type == SRSRAN_TDD && prog_args.tdd_special_sf >= 0 && prog_args.sf_config >= 0) { dl_sf.tdd_config.ss_config = prog_args.tdd_special_sf; dl_sf.tdd_config.sf_config = prog_args.sf_config; dl_sf.tdd_config.configured = true; } srsran_chest_dl_cfg_t chest_pdsch_cfg = {}; chest_pdsch_cfg.cfo_estimate_enable = prog_args.enable_cfo_ref; chest_pdsch_cfg.cfo_estimate_sf_mask = 1023; chest_pdsch_cfg.estimator_alg = srsran_chest_dl_str2estimator_alg(prog_args.estimator_alg); chest_pdsch_cfg.sync_error_enable = true; // Special configuration for MBSFN channel estimation srsran_chest_dl_cfg_t chest_mbsfn_cfg = {}; chest_mbsfn_cfg.filter_type = SRSRAN_CHEST_FILTER_TRIANGLE; chest_mbsfn_cfg.filter_coef[0] = 0.1; chest_mbsfn_cfg.estimator_alg = SRSRAN_ESTIMATOR_ALG_INTERPOLATE; chest_mbsfn_cfg.noise_alg = SRSRAN_NOISE_ALG_PSS; // Allocate softbuffer buffers srsran_softbuffer_rx_t rx_softbuffers[SRSRAN_MAX_CODEWORDS]; for (uint32_t i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { pdsch_cfg.softbuffers.rx[i] = &rx_softbuffers[i]; srsran_softbuffer_rx_init(pdsch_cfg.softbuffers.rx[i], cell.nof_prb); } pdsch_cfg.rnti = prog_args.rnti; /* Configure MBSFN area id and non-MBSFN Region */ if (prog_args.mbsfn_area_id > -1) { srsran_ue_dl_set_mbsfn_area_id(&ue_dl, prog_args.mbsfn_area_id); srsran_ue_dl_set_non_mbsfn_region(&ue_dl, prog_args.non_mbsfn_region); } #ifdef ENABLE_GUI if (!prog_args.disable_plots) { init_plots(cell); sleep(1); } #endif /* ENABLE_GUI */ #ifndef DISABLE_RF if (!prog_args.input_file_name) { srsran_rf_start_rx_stream(&rf, false); } #endif #ifndef DISABLE_RF if (prog_args.rf_gain < 0 && !prog_args.input_file_name) { srsran_rf_info_t* rf_info = srsran_rf_get_info(&rf); srsran_ue_sync_start_agc(&ue_sync, srsran_rf_set_rx_gain_th_wrapper_, rf_info->min_rx_gain, rf_info->max_rx_gain, cell_detect_config.init_agc); } #endif #ifdef PRINT_CHANGE_SCHEDULING srsran_ra_dl_grant_t old_dl_dci; bzero(&old_dl_dci, sizeof(srsran_ra_dl_grant_t)); #endif ue_sync.cfo_correct_enable_track = !prog_args.disable_cfo; srsran_pbch_decode_reset(&ue_mib.pbch); INFO("\nEntering main loop..."); // Variables for measurements uint32_t nframes = 0; float rsrp0 = 0.0, rsrp1 = 0.0, rsrq = 0.0, snr = 0.0, enodebrate = 0.0, uerate = 0.0, procrate = 0.0, sinr[SRSRAN_MAX_LAYERS][SRSRAN_MAX_CODEBOOKS] = {}, sync_err[SRSRAN_MAX_PORTS][SRSRAN_MAX_PORTS] = {}; bool decode_pdsch = false; for (int i = 0; i < SRSRAN_MAX_LAYERS; i++) { srsran_vec_f_zero(sinr[i], SRSRAN_MAX_CODEBOOKS); } /* Main loop */ uint64_t sf_cnt = 0; uint32_t sfn = 0; uint32_t last_decoded_tm = 0; while (!go_exit && (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1)) { char input[128]; PRINT_LINE_INIT(); fd_set set; FD_ZERO(&set); FD_SET(0, &set); struct timeval to; to.tv_sec = 0; to.tv_usec = 0; /* Set default verbose level */ set_srsran_verbose_level(prog_args.verbose); int n = select(1, &set, NULL, NULL, &to); if (n == 1) { /* If a new line is detected set verbose level to Debug */ if (fgets(input, sizeof(input), stdin)) { set_srsran_verbose_level(SRSRAN_VERBOSE_DEBUG); pkt_errors = 0; pkt_total = 0; nof_detected = 0; nof_trials = 0; } } cf_t* buffers[SRSRAN_MAX_CHANNELS] = {}; for (int p = 0; p < SRSRAN_MAX_PORTS; p++) { buffers[p] = sf_buffer[p]; } ret = srsran_ue_sync_zerocopy(&ue_sync, buffers, max_num_samples); if (ret < 0) { ERROR("Error calling srsran_ue_sync_work()"); } #ifdef CORRECT_SAMPLE_OFFSET float sample_offset = (float)srsran_ue_sync_get_last_sample_offset(&ue_sync) + srsran_ue_sync_get_sfo(&ue_sync) / 1000; srsran_ue_dl_set_sample_offset(&ue_dl, sample_offset); #endif /* srsran_ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */ if (ret == 1) { bool acks[SRSRAN_MAX_CODEWORDS] = {false}; struct timeval t[3]; uint32_t sf_idx = srsran_ue_sync_get_sfidx(&ue_sync); switch (state) { case DECODE_MIB: if (sf_idx == 0) { uint8_t bch_payload[SRSRAN_BCH_PAYLOAD_LEN]; int sfn_offset; n = srsran_ue_mib_decode(&ue_mib, bch_payload, NULL, &sfn_offset); if (n < 0) { ERROR("Error decoding UE MIB"); exit(-1); } else if (n == SRSRAN_UE_MIB_FOUND) { srsran_pbch_mib_unpack(bch_payload, &cell, &sfn); srsran_cell_fprint(stdout, &cell, sfn); printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset); sfn = (sfn + sfn_offset) % 1024; state = DECODE_PDSCH; } } break; case DECODE_PDSCH: if (prog_args.rnti != SRSRAN_SIRNTI) { decode_pdsch = true; if (srsran_sfidx_tdd_type(dl_sf.tdd_config, sf_idx) == SRSRAN_TDD_SF_U) { decode_pdsch = false; } } else { /* We are looking for SIB1 Blocks, search only in appropiate places */ if ((sf_idx == 5 && (sfn % 2) == 0) || mch_table[sf_idx] == 1) { decode_pdsch = true; } else { decode_pdsch = false; } } uint32_t tti = sfn * 10 + sf_idx; gettimeofday(&t[1], NULL); if (decode_pdsch) { srsran_sf_t sf_type; if (mch_table[sf_idx] == 0 || prog_args.mbsfn_area_id < 0) { // Not an MBSFN subframe sf_type = SRSRAN_SF_NORM; // Set PDSCH channel estimation ue_dl_cfg.chest_cfg = chest_pdsch_cfg; } else { sf_type = SRSRAN_SF_MBSFN; // Set MBSFN channel estimation ue_dl_cfg.chest_cfg = chest_mbsfn_cfg; } n = 0; for (uint32_t tm = 0; tm < 4 && !n; tm++) { dl_sf.tti = tti; dl_sf.sf_type = sf_type; ue_dl_cfg.cfg.tm = (srsran_tm_t)tm; ue_dl_cfg.cfg.pdsch.use_tbs_index_alt = prog_args.enable_256qam; if ((ue_dl_cfg.cfg.tm == SRSRAN_TM1 && cell.nof_ports == 1) || (ue_dl_cfg.cfg.tm > SRSRAN_TM1 && cell.nof_ports > 1)) { n = srsran_ue_dl_find_and_decode(&ue_dl, &dl_sf, &ue_dl_cfg, &pdsch_cfg, data, acks); if (n > 0) { nof_detected++; last_decoded_tm = tm; for (uint32_t tb = 0; tb < SRSRAN_MAX_CODEWORDS; tb++) { if (pdsch_cfg.grant.tb[tb].enabled) { if (!acks[tb]) { if (sf_type == SRSRAN_SF_NORM) { pkt_errors++; } else { pmch_pkt_errors++; } } if (sf_type == SRSRAN_SF_NORM) { pkt_total++; } else { pmch_pkt_total++; } } } } } } // Feed-back ue_sync with chest_dl CFO estimation if (sf_idx == 5 && prog_args.enable_cfo_ref) { srsran_ue_sync_set_cfo_ref(&ue_sync, ue_dl.chest_res.cfo); } gettimeofday(&t[2], NULL); get_time_interval(t); if (n > 0) { /* Send data if socket active */ if (prog_args.net_port > 0) { if (sf_idx == 1) { srsran_netsink_write(&net_sink, data[0], 1 + (n - 1) / 8); } else { // TODO: UDP Data transmission does not work for (uint32_t tb = 0; tb < SRSRAN_MAX_CODEWORDS; tb++) { if (pdsch_cfg.grant.tb[tb].enabled) { srsran_netsink_write(&net_sink, data[tb], 1 + (pdsch_cfg.grant.tb[tb].tbs - 1) / 8); } } } } #ifdef PRINT_CHANGE_SCHEDULING if (pdsch_cfg.dci.cw[0].mcs_idx != old_dl_dci.cw[0].mcs_idx || memcmp(&pdsch_cfg.dci.type0_alloc, &old_dl_dci.type0_alloc, sizeof(srsran_ra_type0_t)) || memcmp(&pdsch_cfg.dci.type1_alloc, &old_dl_dci.type1_alloc, sizeof(srsran_ra_type1_t)) || memcmp(&pdsch_cfg.dci.type2_alloc, &old_dl_dci.type2_alloc, sizeof(srsran_ra_type2_t))) { old_dl_dci = pdsch_cfg.dci; fflush(stdout); printf("DCI %s\n", srsran_dci_format_string(pdsch_cfg.dci.dci_format)); srsran_ra_pdsch_fprint(stdout, &old_dl_dci, cell.nof_prb); } #endif } nof_trials++; uint32_t enb_bits = ((pdsch_cfg.grant.tb[0].enabled ? pdsch_cfg.grant.tb[0].tbs : 0) + (pdsch_cfg.grant.tb[1].enabled ? pdsch_cfg.grant.tb[1].tbs : 0)); uint32_t ue_bits = ((acks[0] ? pdsch_cfg.grant.tb[0].tbs : 0) + (acks[1] ? pdsch_cfg.grant.tb[1].tbs : 0)); rsrq = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_dbm, rsrq, 0.1f); rsrp0 = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_port_dbm[0], rsrp0, 0.05f); rsrp1 = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_port_dbm[1], rsrp1, 0.05f); snr = SRSRAN_VEC_EMA(ue_dl.chest_res.snr_db, snr, 0.05f); enodebrate = SRSRAN_VEC_EMA(enb_bits / 1000.0f, enodebrate, 0.05f); uerate = SRSRAN_VEC_EMA(ue_bits / 1000.0f, uerate, 0.001f); if (chest_pdsch_cfg.sync_error_enable) { for (uint32_t i = 0; i < cell.nof_ports; i++) { for (uint32_t j = 0; j < prog_args.rf_nof_rx_ant; j++) { sync_err[i][j] = SRSRAN_VEC_EMA(ue_dl.chest.sync_err[i][j], sync_err[i][j], 0.001f); if (!isnormal(sync_err[i][j])) { sync_err[i][j] = 0.0f; } } } } float elapsed = (float)t[0].tv_usec + t[0].tv_sec * 1.0e+6f; if (elapsed != 0.0f) { procrate = SRSRAN_VEC_EMA(ue_bits / elapsed, procrate, 0.01f); } nframes++; if (isnan(rsrq)) { rsrq = 0; } if (isnan(snr)) { snr = 0; } if (isnan(rsrp0)) { rsrp0 = 0; } if (isnan(rsrp1)) { rsrp1 = 0; } } // Plot and Printf if (sf_idx == 5) { float gain = prog_args.rf_gain; if (gain < 0) { gain = srsran_convert_power_to_dB(srsran_agc_get_gain(&ue_sync.agc)); } /* Print transmission scheme */ /* Print basic Parameters */ PRINT_LINE(" CFO: %+7.2f Hz", srsran_ue_sync_get_cfo(&ue_sync)); PRINT_LINE(" RSRP: %+5.1f dBm | %+5.1f dBm", rsrp0, rsrp1); PRINT_LINE(" SNR: %+5.1f dB", snr); PRINT_LINE(" TM: %d", last_decoded_tm + 1); PRINT_LINE( " Rb: %6.2f / %6.2f / %6.2f Mbps (net/maximum/processing)", uerate, enodebrate, procrate); PRINT_LINE(" PDCCH-Miss: %5.2f%%", 100 * (1 - (float)nof_detected / nof_trials)); PRINT_LINE(" PDSCH-BLER: %5.2f%%", (float)100 * pkt_errors / pkt_total); PRINT_LINE(" PDSCH-EVM: %5.2f%%", ue_dl.pdsch.avg_evm); if (prog_args.mbsfn_area_id > -1) { PRINT_LINE(" PMCH-BLER: %5.2f%%", (float)100 * pkt_errors / pmch_pkt_total); } PRINT_LINE(" TB 0: mcs=%d; tbs=%d", pdsch_cfg.grant.tb[0].mcs_idx, pdsch_cfg.grant.tb[0].tbs); PRINT_LINE(" TB 1: mcs=%d; tbs=%d", pdsch_cfg.grant.tb[1].mcs_idx, pdsch_cfg.grant.tb[1].tbs); /* MIMO: if tx and rx antennas are bigger than 1 */ if (cell.nof_ports > 1 && ue_dl.pdsch.nof_rx_antennas > 1) { uint32_t ri = 0; float cn = 0; /* Compute condition number */ if (srsran_ue_dl_select_ri(&ue_dl, &ri, &cn)) { /* Condition number calculation is not supported for the number of tx & rx antennas*/ PRINT_LINE(" κ: NA"); } else { /* Print condition number */ PRINT_LINE(" κ: %.1f dB, RI=%d (Condition number, 0 dB => Best)", cn, ri); } PRINT_LINE(""); } if (chest_pdsch_cfg.sync_error_enable) { for (uint32_t i = 0; i < cell.nof_ports; i++) { for (uint32_t j = 0; j < prog_args.rf_nof_rx_ant; j++) { PRINT_LINE("sync_err[%d][%d]=%f", i, j, sync_err[i][j]); } } } PRINT_LINE("Press enter maximum printing debug log of 1 subframe."); PRINT_LINE(""); PRINT_LINE_RESET_CURSOR(); } break; } if (sf_idx == 9) { sfn++; if (sfn == 1024) { sfn = 0; PRINT_LINE_ADVANCE_CURSOR(); pkt_errors = 0; pkt_total = 0; pmch_pkt_errors = 0; pmch_pkt_total = 0; } } #ifdef ENABLE_GUI if (!prog_args.disable_plots) { if ((sfn % 3) == 0 && decode_pdsch) { plot_sf_idx = sf_idx; plot_track = true; sem_post(&plot_sem); } } #endif /* ENABLE_GUI */ } else if (ret == 0) { printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r", srsran_sync_get_peak_value(&ue_sync.sfind), ue_sync.frame_total_cnt, ue_sync.state); #ifdef ENABLE_GUI if (!prog_args.disable_plots) { plot_sf_idx = srsran_ue_sync_get_sfidx(&ue_sync); plot_track = false; sem_post(&plot_sem); } #endif /* ENABLE_GUI */ } sf_cnt++; } // Main loop #ifdef ENABLE_GUI if (!prog_args.disable_plots) { if (!pthread_kill(plot_thread, 0)) { pthread_kill(plot_thread, SIGHUP); pthread_join(plot_thread, NULL); } } #endif srsran_ue_dl_free(&ue_dl); srsran_ue_sync_free(&ue_sync); for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { if (data[i]) { free(data[i]); } } for (int i = 0; i < prog_args.rf_nof_rx_ant; i++) { if (sf_buffer[i]) { free(sf_buffer[i]); } } #ifndef DISABLE_RF if (!prog_args.input_file_name) { srsran_ue_mib_free(&ue_mib); srsran_rf_close(&rf); } #endif printf("\nBye\n"); exit(0); } /********************************************************************** * Plotting Functions ***********************************************************************/ #ifdef ENABLE_GUI plot_real_t p_sync, pce; plot_scatter_t pscatequal, pscatequal_pdcch, pscatequal_pmch; static float tmp_plot[110 * 15 * 2048]; static float tmp_plot2[110 * 15 * 2048]; void* plot_thread_run(void* arg) { int i; uint32_t nof_re = SRSRAN_SF_LEN_RE(ue_dl.cell.nof_prb, ue_dl.cell.cp); sdrgui_init(); plot_scatter_init(&pscatequal); plot_scatter_setTitle(&pscatequal, "PDSCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal, -4, 4); plot_scatter_setYAxisScale(&pscatequal, -4, 4); plot_scatter_addToWindowGrid(&pscatequal, (char*)"pdsch_ue", 0, 0); if (enable_mbsfn_plot) { plot_scatter_init(&pscatequal_pmch); plot_scatter_setTitle(&pscatequal_pmch, "PMCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pmch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pmch, -4, 4); plot_scatter_addToWindowGrid(&pscatequal_pmch, (char*)"pdsch_ue", 0, 1); } if (!prog_args.disable_plots_except_constellation) { plot_real_init(&pce); plot_real_setTitle(&pce, "Channel Response - Magnitude"); plot_real_setLabels(&pce, "Index", "dB"); plot_real_setYAxisScale(&pce, -40, 40); plot_real_init(&p_sync); plot_real_setTitle(&p_sync, "PSS Cross-Corr abs value"); plot_real_setYAxisScale(&p_sync, 0, 1); plot_scatter_init(&pscatequal_pdcch); plot_scatter_setTitle(&pscatequal_pdcch, "PDCCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pdcch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pdcch, -4, 4); plot_real_addToWindowGrid(&pce, (char*)"pdsch_ue", 0, (enable_mbsfn_plot) ? 2 : 1); plot_real_addToWindowGrid(&pscatequal_pdcch, (char*)"pdsch_ue", 1, 0); plot_real_addToWindowGrid(&p_sync, (char*)"pdsch_ue", 1, 1); } while (1) { sem_wait(&plot_sem); uint32_t nof_symbols = pdsch_cfg.grant.nof_re; if (!prog_args.disable_plots_except_constellation) { for (i = 0; i < nof_re; i++) { tmp_plot[i] = srsran_convert_amplitude_to_dB(cabsf(ue_dl.sf_symbols[0][i])); if (isinf(tmp_plot[i])) { tmp_plot[i] = -80; } } int sz = srsran_symbol_sz(ue_dl.cell.nof_prb); if (sz > 0) { srsran_vec_f_zero(tmp_plot2, sz); } int g = (sz - 12 * ue_dl.cell.nof_prb) / 2; for (i = 0; i < 12 * ue_dl.cell.nof_prb; i++) { tmp_plot2[g + i] = srsran_convert_amplitude_to_dB(cabsf(ue_dl.chest_res.ce[0][0][i])); if (isinf(tmp_plot2[g + i])) { tmp_plot2[g + i] = -80; } } plot_real_setNewData(&pce, tmp_plot2, sz); if (!prog_args.input_file_name) { if (plot_track) { srsran_pss_t* pss_obj = srsran_sync_get_cur_pss_obj(&ue_sync.strack); int max = srsran_vec_max_fi(pss_obj->conv_output_avg, pss_obj->frame_size + pss_obj->fft_size - 1); srsran_vec_sc_prod_fff(pss_obj->conv_output_avg, 1 / pss_obj->conv_output_avg[max], tmp_plot2, pss_obj->frame_size + pss_obj->fft_size - 1); plot_real_setNewData(&p_sync, tmp_plot2, pss_obj->frame_size); } else { int max = srsran_vec_max_fi(ue_sync.sfind.pss.conv_output_avg, ue_sync.sfind.pss.frame_size + ue_sync.sfind.pss.fft_size - 1); srsran_vec_sc_prod_fff(ue_sync.sfind.pss.conv_output_avg, 1 / ue_sync.sfind.pss.conv_output_avg[max], tmp_plot2, ue_sync.sfind.pss.frame_size + ue_sync.sfind.pss.fft_size - 1); plot_real_setNewData(&p_sync, tmp_plot2, ue_sync.sfind.pss.frame_size); } } plot_scatter_setNewData(&pscatequal_pdcch, ue_dl.pdcch.d, 36 * ue_dl.pdcch.nof_cce[0]); } plot_scatter_setNewData(&pscatequal, ue_dl.pdsch.d[0], nof_symbols); if (enable_mbsfn_plot) { plot_scatter_setNewData(&pscatequal_pmch, ue_dl.pmch.d, nof_symbols); } if (plot_sf_idx == 1) { if (prog_args.net_port_signal > 0) { srsran_netsink_write( &net_sink_signal, &sf_buffer[srsran_ue_sync_sf_len(&ue_sync) / 7], srsran_ue_sync_sf_len(&ue_sync)); } } } return NULL; } void init_plots() { if (sem_init(&plot_sem, 0, 0)) { perror("sem_init"); exit(-1); } pthread_attr_t attr; struct sched_param param; param.sched_priority = 0; pthread_attr_init(&attr); pthread_attr_setschedpolicy(&attr, SCHED_OTHER); pthread_attr_setschedparam(&attr, ¶m); if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) { perror("pthread_create"); exit(-1); } } #endif /* ENABLE_GUI */