/** * Copyright 2013-2022 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsran/rlc/rlc.h" #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } #define MAX_NBUFS 100 #define NBUFS 5 using namespace srsran; class rlc_tester : public srsue::pdcp_interface_rlc, public srsue::rrc_interface_rlc { public: rlc_tester() { bzero(sdus, sizeof(sdus)); n_sdus = 0; expected_sdu_len = 0; } // PDCP interface void write_pdu(uint32_t lcid, unique_byte_buffer_t sdu) { if (lcid != 3 && sdu->N_bytes != expected_sdu_len) { printf("Received PDU with size %d, expected %d. Exiting.\n", sdu->N_bytes, expected_sdu_len); exit(-1); } sdus[n_sdus++] = std::move(sdu); } void notify_delivery(uint32_t lcid, const srsran::pdcp_sn_vector_t& pdcp_sn) {} void notify_failure(uint32_t lcid, const srsran::pdcp_sn_vector_t& pdcp_sn) {} void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {} void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {} void write_pdu_pcch(unique_byte_buffer_t sdu) {} void write_pdu_mch(uint32_t lcid, srsran::unique_byte_buffer_t sdu) { sdus[n_sdus++] = std::move(sdu); } // RRC interface void max_retx_attempted() {} void protocol_failure() {} const char* get_rb_name(uint32_t lcid) { return "TestRB"; } void set_expected_sdu_len(uint32_t len) { expected_sdu_len = len; } unique_byte_buffer_t sdus[MAX_NBUFS]; int n_sdus; uint32_t expected_sdu_len; }; int meas_obj_test() { auto& logger_rlc1 = srslog::fetch_basic_logger("RLC_1", false); logger_rlc1.set_level(srslog::basic_levels::debug); logger_rlc1.set_hex_dump_max_size(-1); auto& logger_rlc2 = srslog::fetch_basic_logger("RLC_2", false); logger_rlc2.set_level(srslog::basic_levels::debug); logger_rlc2.set_hex_dump_max_size(-1); rlc_tester tester; srsran::timer_handler timers(1); int len = 0; rlc rlc1(logger_rlc1.id().c_str()); rlc rlc2(logger_rlc2.id().c_str()); rlc1.init(&tester, &tester, &timers, 0); rlc2.init(&tester, &tester, &timers, 0); rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(10); cnfg.rlc_mode = rlc_mode_t::um; cnfg.um.t_reordering = 5; cnfg.um.rx_sn_field_length = rlc_umd_sn_size_t::size10bits; cnfg.um.rx_window_size = 512; cnfg.um.rx_mod = 1024; cnfg.um.tx_sn_field_length = rlc_umd_sn_size_t::size10bits; cnfg.um.tx_mod = 1024; uint32_t lcid = 1; rlc1.add_bearer(lcid, cnfg); rlc2.add_bearer(lcid, cnfg); byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; tester.set_expected_sdu_len(1); // Push 5 SDUs into RLC1 for (int i = 0; i < NBUFS; i++) { sdu_bufs[i] = srsran::make_byte_buffer(); *sdu_bufs[i]->msg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(lcid, std::move(sdu_bufs[i])); } TESTASSERT(14 == rlc1.get_buffer_state(lcid)); // Reestablish rlc1.reestablish(1); TESTASSERT(0 == rlc1.get_buffer_state(lcid)); // Push again 5 SDUs, SN should start from 0 for (int i = 0; i < NBUFS; i++) { sdu_bufs[i] = srsran::make_byte_buffer(); *sdu_bufs[i]->msg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(lcid, std::move(sdu_bufs[i])); } TESTASSERT(14 == rlc1.get_buffer_state(lcid)); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for (int i = 0; i < NBUFS; i++) { len = rlc1.read_pdu(lcid, pdu_bufs[i].msg, 4); // 3 bytes for header + payload pdu_bufs[i].N_bytes = len; } TESTASSERT(0 == rlc1.get_buffer_state(lcid)); // Write 5 PDUs into RLC2 for (int i = 0; i < NBUFS; i++) { rlc2.write_pdu(lcid, pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } // Check they have been passed to PDCP TESTASSERT(NBUFS == tester.n_sdus); rlc2.reestablish(lcid); tester.n_sdus = 0; // Push again for (int i = 0; i < NBUFS; i++) { rlc2.write_pdu(lcid, pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } // Check the are again in the buffer TESTASSERT(NBUFS == tester.n_sdus); for (int i = 0; i < NBUFS; i++) { TESTASSERT(tester.sdus[i]->N_bytes == 1); TESTASSERT(*(tester.sdus[i]->msg) == i); } // Resume unexisting and unsuspended bearer rlc2.resume_bearer(lcid + 1); rlc2.resume_bearer(lcid); // Suspend unexisting bearer and twice rlc2.suspend_bearer(lcid + 1); rlc2.suspend_bearer(lcid); rlc2.suspend_bearer(lcid); // Reestablish and push again while in suspended rlc2.reestablish(lcid); tester.n_sdus = 0; // Push again for (int i = 0; i < NBUFS; i++) { rlc2.write_pdu(lcid, pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } // Check they are not being passed to PDCP TESTASSERT(0 == tester.n_sdus); rlc2.resume_bearer(lcid); // Check now they are being passed TESTASSERT(NBUFS == tester.n_sdus); for (int i = 0; i < NBUFS; i++) { TESTASSERT(tester.sdus[i]->N_bytes == 1); TESTASSERT(*(tester.sdus[i]->msg) == i); } return 0; } int main(int argc, char** argv) { srslog::init(); if (meas_obj_test()) { return -1; } }