/** * Copyright 2013-2022 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsran/adt/move_callback.h" #include "srsran/common/multiqueue.h" #include "srsran/common/test_common.h" #include "srsran/common/thread_pool.h" #include #include #include #include #include using namespace srsran; int test_multiqueue() { std::cout << "\n======= TEST multiqueue test: start =======\n"; int number = 2; multiqueue_handler multiqueue; TESTASSERT(multiqueue.nof_queues() == 0); // test push/pop and size for one queue queue_handle qid1 = multiqueue.add_queue(); TESTASSERT(qid1.active()); TESTASSERT(qid1.size() == 0 and qid1.empty()); TESTASSERT(multiqueue.nof_queues() == 1); TESTASSERT(qid1.try_push(5).has_value()); TESTASSERT(qid1.try_push(number)); TESTASSERT(qid1.size() == 2 and not qid1.empty()); TESTASSERT(multiqueue.wait_pop(&number)); TESTASSERT(number == 5); TESTASSERT(multiqueue.wait_pop(&number)); TESTASSERT(number == 2 and qid1.empty()); // test push/pop and size for two queues queue_handle qid2 = multiqueue.add_queue(); TESTASSERT(qid2.active()); TESTASSERT(multiqueue.nof_queues() == 2 and qid1.active()); TESTASSERT(qid2.try_push(3).has_value()); TESTASSERT(qid2.size() == 1 and not qid2.empty()); TESTASSERT(qid1.empty()); // check if erasing a queue breaks anything qid1.reset(); TESTASSERT(multiqueue.nof_queues() == 1 and not qid1.active()); qid1 = multiqueue.add_queue(); TESTASSERT(qid1.empty() and qid1.active()); TESTASSERT(qid2.size() == 1 and not qid2.empty()); multiqueue.wait_pop(&number); // check round-robin for (int i = 0; i < 10; ++i) { TESTASSERT(qid1.try_push(i)); } for (int i = 20; i < 35; ++i) { TESTASSERT(qid2.try_push(i)); } TESTASSERT(qid1.size() == 10); TESTASSERT(qid2.size() == 15); TESTASSERT(multiqueue.wait_pop(&number) and number == 0); TESTASSERT(multiqueue.wait_pop(&number) and number == 20); TESTASSERT(multiqueue.wait_pop(&number) and number == 1); TESTASSERT(multiqueue.wait_pop(&number) and number == 21); TESTASSERT(qid1.size() == 8); TESTASSERT(qid2.size() == 13); for (int i = 0; i < 8 * 2; ++i) { multiqueue.wait_pop(&number); } TESTASSERT(qid1.size() == 0); TESTASSERT(qid2.size() == 5); TESTASSERT(multiqueue.wait_pop(&number) and number == 30); // remove existing queues qid1.reset(); qid2.reset(); TESTASSERT(multiqueue.nof_queues() == 0); // check that adding a queue of different capacity works { qid1 = multiqueue.add_queue(); qid2 = multiqueue.add_queue(); // remove first queue again qid1.reset(); TESTASSERT(multiqueue.nof_queues() == 1); // add queue with non-default capacity auto qid3 = multiqueue.add_queue(10); TESTASSERT(qid3.capacity() == 10); // make sure neither a new queue index is returned TESTASSERT(qid1 != qid3); TESTASSERT(qid2 != qid3); } std::cout << "outcome: Success\n"; std::cout << "===========================================\n"; return 0; } int test_multiqueue_threading() { std::cout << "\n===== TEST multiqueue threading test: start =====\n"; int capacity = 4, number = 0, start_number = 2, nof_pushes = capacity + 1; multiqueue_handler multiqueue(capacity); auto qid1 = multiqueue.add_queue(); std::atomic t1_running = {true}; auto push_blocking_func = [&t1_running](queue_handle* qid, int start_value, int nof_pushes) { for (int i = 0; i < nof_pushes; ++i) { qid->push(start_value + i); std::cout << "t1: pushed item " << i << std::endl; } std::cout << "t1: pushed all items\n"; t1_running = false; }; std::thread t1(push_blocking_func, &qid1, start_number, nof_pushes); // Wait for queue to fill while ((int)qid1.size() != capacity) { usleep(1000); TESTASSERT(t1_running); } for (int i = 0; i < nof_pushes; ++i) { TESTASSERT(multiqueue.wait_pop(&number)); TESTASSERT(number == start_number + i); std::cout << "main: popped item " << i << "\n"; } std::cout << "main: popped all items\n"; // wait for thread to finish while (t1_running) { usleep(1000); } TESTASSERT(qid1.size() == 0); multiqueue.stop(); t1.join(); std::cout << "outcome: Success\n"; std::cout << "==================================================\n"; return 0; } int test_multiqueue_threading2() { std::cout << "\n===== TEST multiqueue threading test 2: start =====\n"; // Description: push items until blocking in thread t1. Unblocks in main thread by calling multiqueue.reset() int capacity = 4, start_number = 2, nof_pushes = capacity + 1; multiqueue_handler multiqueue(capacity); auto qid1 = multiqueue.add_queue(); auto push_blocking_func = [](queue_handle* qid, int start_value, int nof_pushes, bool* is_running) { for (int i = 0; i < nof_pushes; ++i) { qid->push(start_value + i); } std::cout << "t1: pushed all items\n"; *is_running = false; }; bool t1_running = true; std::thread t1(push_blocking_func, &qid1, start_number, nof_pushes, &t1_running); // Wait for queue to fill while ((int)qid1.size() != capacity) { usleep(1000); TESTASSERT(t1_running); } multiqueue.stop(); t1.join(); std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } int test_multiqueue_threading3() { std::cout << "\n===== TEST multiqueue threading test 3: start =====\n"; // pop will block in a separate thread, but multiqueue.reset() will unlock it int capacity = 4; multiqueue_handler multiqueue(capacity); auto qid1 = multiqueue.add_queue(); auto pop_blocking_func = [&multiqueue](bool* success) { int number = 0; bool ret = multiqueue.wait_pop(&number); *success = not ret; }; bool t1_success = false; std::thread t1(pop_blocking_func, &t1_success); TESTASSERT(not t1_success); usleep(1000); TESTASSERT(not t1_success); TESTASSERT((int)qid1.size() == 0); // Should be able to unlock all multiqueue.stop(); TESTASSERT(multiqueue.nof_queues() == 0); TESTASSERT(not qid1.active()); t1.join(); TESTASSERT(t1_success); std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } int test_multiqueue_threading4() { std::cout << "\n===== TEST multiqueue threading test 4: start =====\n"; // Description: the consumer will block on popping, but the pushing from different producers // should be sufficient to awake it when necessary int capacity = 4; multiqueue_handler multiqueue(capacity); auto qid1 = multiqueue.add_queue(); auto qid2 = multiqueue.add_queue(); auto qid3 = multiqueue.add_queue(); auto qid4 = multiqueue.add_queue(); std::mutex mutex; int last_number = -1; auto pop_blocking_func = [&multiqueue, &last_number, &mutex](bool* success) { int number = 0; while (multiqueue.wait_pop(&number)) { std::lock_guard lock(mutex); last_number = std::max(last_number, number); } *success = true; }; bool t1_success = false; std::thread t1(pop_blocking_func, &t1_success); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dist{0, 2}; for (int i = 0; i < 10000; ++i) { int qidx = dist(gen); switch (qidx) { case 0: qid1.push(i); break; case 1: qid2.push(i); break; case 2: qid4.push(i); break; default: break; } if (i % 20 == 0) { int count = 0; std::unique_lock lock(mutex); while (last_number != i) { lock.unlock(); usleep(100); count++; TESTASSERT(count < 100000); lock.lock(); } } } // Should be able to unlock all multiqueue.stop(); TESTASSERT(multiqueue.nof_queues() == 0); TESTASSERT(not qid1.active()); t1.join(); TESTASSERT(t1_success); std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } int test_task_thread_pool() { std::cout << "\n====== TEST task thread pool test 1: start ======\n"; // Description: check whether the tasks are successfully distributed between workers uint32_t nof_workers = 4, nof_runs = 10000; std::mutex count_mutex; std::map count_worker; task_thread_pool thread_pool(nof_workers); auto task = [&count_worker, &count_mutex]() { std::lock_guard lock(count_mutex); count_worker[std::this_thread::get_id()]++; }; for (uint32_t i = 0; i < nof_runs; ++i) { thread_pool.push_task(task); } // wait for all tasks to be successfully processed while (thread_pool.nof_pending_tasks() > 0) { usleep(100); } thread_pool.stop(); uint32_t total_count = 0; for (auto& w : count_worker) { if (w.second < 10) { std::cout << "WARNING: the number of tasks " << w.second << " assigned to worker " << w.first << " is too low"; } total_count += w.second; std::cout << "worker " << w.first << ": " << w.second << " runs\n"; } if (total_count != nof_runs) { printf("Number of task runs=%d does not match total=%d\n", total_count, nof_runs); return -1; } std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } int test_task_thread_pool2() { std::cout << "\n====== TEST task thread pool test 2: start ======\n"; // Description: push a very long task to all workers, and call thread_pool.stop() to check if it waits for the tasks // to be completed, and does not get stuck. uint32_t nof_workers = 4; std::atomic workers_started{0}; uint8_t workers_finished = 0; std::mutex mut; task_thread_pool thread_pool(nof_workers); thread_pool.start(); auto task = [&workers_started, &workers_finished, &mut]() { { std::lock_guard lock(mut); workers_started++; } std::this_thread::sleep_for(std::chrono::seconds{1}); std::lock_guard lock(mut); std::cout << "worker has finished\n"; workers_finished++; }; for (uint32_t i = 0; i < nof_workers; ++i) { thread_pool.push_task(task); } while (workers_started != nof_workers) { usleep(10); } std::cout << "stopping thread pool...\n"; thread_pool.stop(); std::cout << "thread pool stopped.\n"; TESTASSERT(workers_finished == nof_workers); std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } int test_task_thread_pool3() { std::cout << "\n====== TEST task thread pool test 3: start ======\n"; // Description: create many workers and shut down the pool before all of them started yet. Should exit cleanly uint32_t nof_workers = 100; task_thread_pool thread_pool(nof_workers); thread_pool.start(); std::cout << "outcome: Success\n"; std::cout << "===================================================\n"; return 0; } struct C { std::unique_ptr val{new int{5}}; }; struct D { std::array big_val; D() { big_val[0] = 6; } }; int test_inplace_task() { std::cout << "\n======= TEST inplace task: start =======\n"; int v = 0; auto l0 = [&v]() { v = 1; }; srsran::move_callback t{l0}; srsran::move_callback t2{[v]() mutable { v = 2; }}; // sanity static checks static_assert(task_details::is_move_callback::type>::value, "failed check\n"); static_assert( std::is_base_of::type> >::value, "failed check\n"); t(); t2(); TESTASSERT(v == 1); v = 2; decltype(t) t3 = std::move(t); t3(); TESTASSERT(v == 1); C c; srsran::move_callback t4{std::bind([&v](C& c) { v = *c.val; }, std::move(c))}; { decltype(t4) t5; t5 = std::move(t4); t5(); TESTASSERT(v == 5); } D d; srsran::move_callback t6 = [&v, d]() { v = d.big_val[0]; }; { srsran::move_callback t7; t6(); TESTASSERT(v == 6); v = 0; t7 = std::move(t6); t7(); TESTASSERT(v == 6); } auto l1 = std::bind([&v](C& c) { v = *c.val; }, C{}); auto l2 = [&v, d]() { v = d.big_val[0]; }; t = std::move(l1); t2 = l2; v = 0; t(); TESTASSERT(v == 5); t2(); TESTASSERT(v == 6); TESTASSERT(t.is_in_small_buffer() and not t2.is_in_small_buffer()); std::swap(t, t2); TESTASSERT(t2.is_in_small_buffer() and not t.is_in_small_buffer()); v = 0; t(); TESTASSERT(v == 6); t2(); TESTASSERT(v == 5); // TEST: task works in const contexts t = l2; auto l3 = [](const srsran::move_callback& task) { task(); }; v = 0; l3(t); TESTASSERT(v == 6); std::cout << "outcome: Success\n"; std::cout << "========================================\n"; return 0; } int main() { TESTASSERT(test_multiqueue() == 0); TESTASSERT(test_multiqueue_threading() == 0); TESTASSERT(test_multiqueue_threading2() == 0); TESTASSERT(test_multiqueue_threading3() == 0); TESTASSERT(test_multiqueue_threading4() == 0); TESTASSERT(test_task_thread_pool() == 0); TESTASSERT(test_task_thread_pool2() == 0); TESTASSERT(test_task_thread_pool3() == 0); TESTASSERT(test_inplace_task() == 0); }