/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "prb.h" #include "liblte/phy/phch/pdsch.h" #include "liblte/phy/common/phy_common.h" #include "liblte/phy/utils/bit.h" #include "liblte/phy/utils/debug.h" #include "liblte/phy/utils/vector.h" #define MAX_PDSCH_RE(cp) (2 * CP_NSYMB(cp) * 12) const lte_mod_t modulations[4] = { LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 }; //#define DEBUG_IDX #ifdef DEBUG_IDX cf_t *offset_original=NULL; #endif int pdsch_cp(pdsch_t *q, cf_t *input, cf_t *output, ra_prb_t *prb_alloc, uint32_t nsubframe, bool put) { uint32_t s, n, l, lp, lstart, lend, nof_refs; bool is_pbch, is_sss; cf_t *in_ptr = input, *out_ptr = output; uint32_t offset = 0; INFO("%s %d RE from %d PRB\n", put ? "Putting" : "Getting", prb_alloc->re_sf[nsubframe], prb_alloc->slot[0].nof_prb); #ifdef DEBUG_IDX offset_original = input; #endif if (q->cell.nof_ports == 1) { nof_refs = 2; } else { nof_refs = 4; } for (s = 0; s < 2; s++) { for (l = 0; l < CP_NSYMB(q->cell.cp); l++) { for (n = 0; n < q->cell.nof_prb; n++) { // If this PRB is assigned if (prb_alloc->slot[s].prb_idx[n]) { if (s == 0) { lstart = prb_alloc->lstart; } else { lstart = 0; } lend = CP_NSYMB(q->cell.cp); is_pbch = is_sss = false; // Skip PSS/SSS signals if (s == 0 && (nsubframe == 0 || nsubframe == 5)) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3) { lend = CP_NSYMB(q->cell.cp) - 2; is_sss = true; } } // Skip PBCH if (s == 1 && nsubframe == 0) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3) { lstart = 4; is_pbch = true; } } lp = l + s * CP_NSYMB(q->cell.cp); if (put) { out_ptr = &output[(lp * q->cell.nof_prb + n) * RE_X_RB]; } else { in_ptr = &input[(lp * q->cell.nof_prb + n) * RE_X_RB]; } // This is a symbol in a normal PRB with or without references if (l >= lstart && l < lend) { if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { if (nof_refs == 2 && l == 0) { offset = q->cell.id % 3 + 3; } else { offset = q->cell.id % 3; } prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs, put); } else { prb_cp(&in_ptr, &out_ptr, 1); } } // This is a symbol in a PRB with PBCH or Synch signals (SS). // If the number or total PRB is odd, half of the the PBCH or SS will fall into the symbol if ((q->cell.nof_prb % 2) && ((is_pbch && l < lstart) || (is_sss && l >= lend))) { if (n == q->cell.nof_prb / 2 - 3) { if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } else if (n == q->cell.nof_prb / 2 + 3) { if (put) { out_ptr += 6; } else { in_ptr += 6; } if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } } } } } } if (put) { return abs((int) (input - in_ptr)); } else { return abs((int) (output - out_ptr)); } } /** * Puts PDSCH in slot number 1 * * Returns the number of symbols written to sf_symbols * * 36.211 10.3 section 6.3.5 */ int pdsch_put(pdsch_t *q, cf_t *pdsch_symbols, cf_t *sf_symbols, ra_prb_t *prb_alloc, uint32_t subframe) { return pdsch_cp(q, pdsch_symbols, sf_symbols, prb_alloc, subframe, true); } /** * Extracts PDSCH from slot number 1 * * Returns the number of symbols written to PDSCH * * 36.211 10.3 section 6.3.5 */ int pdsch_get(pdsch_t *q, cf_t *sf_symbols, cf_t *pdsch_symbols, ra_prb_t *prb_alloc, uint32_t subframe) { return pdsch_cp(q, sf_symbols, pdsch_symbols, prb_alloc, subframe, false); } /** Initializes the PDCCH transmitter and receiver */ int pdsch_init(pdsch_t *q, lte_cell_t cell) { int ret = LIBLTE_ERROR_INVALID_INPUTS; int i; if (q != NULL && lte_cell_isvalid(&cell)) { bzero(q, sizeof(pdsch_t)); ret = LIBLTE_ERROR; q->cell = cell; q->max_symbols = q->cell.nof_prb * MAX_PDSCH_RE(q->cell.cp); INFO("Init PDSCH: %d ports %d PRBs, max_symbols: %d\n", q->cell.nof_ports, q->cell.nof_prb, q->max_symbols); if (precoding_init(&q->precoding, SF_LEN_RE(cell.nof_prb, cell.cp))) { fprintf(stderr, "Error initializing precoding\n"); } for (i = 0; i < 4; i++) { if (modem_table_lte(&q->mod[i], modulations[i], true)) { goto clean; } } if (crc_init(&q->crc_tb, LTE_CRC24A, 24)) { goto clean; } if (crc_init(&q->crc_cb, LTE_CRC24B, 24)) { goto clean; } demod_soft_init(&q->demod); demod_soft_alg_set(&q->demod, APPROX); q->rnti_is_set = false; if (tcod_init(&q->encoder, MAX_LONG_CB)) { goto clean; } if (tdec_init(&q->decoder, MAX_LONG_CB)) { goto clean; } // Allocate floats for reception (LLRs) q->cb_in = malloc(sizeof(uint8_t) * MAX_LONG_CB); if (!q->cb_in) { goto clean; } q->cb_out = malloc(sizeof(float) * (3 * MAX_LONG_CB + 12)); if (!q->cb_out) { goto clean; } // Allocate floats for reception (LLRs) q->pdsch_e = malloc(sizeof(float) * q->max_symbols * q->mod[3].nbits_x_symbol); if (!q->pdsch_e) { goto clean; } q->pdsch_d = malloc(sizeof(cf_t) * q->max_symbols); if (!q->pdsch_d) { goto clean; } for (i = 0; i < q->cell.nof_ports; i++) { q->ce[i] = malloc(sizeof(cf_t) * q->max_symbols); if (!q->ce[i]) { goto clean; } q->pdsch_x[i] = malloc(sizeof(cf_t) * q->max_symbols); if (!q->pdsch_x[i]) { goto clean; } q->pdsch_symbols[i] = malloc(sizeof(cf_t) * q->max_symbols); if (!q->pdsch_symbols[i]) { goto clean; } } ret = LIBLTE_SUCCESS; } clean: if (ret == LIBLTE_ERROR) { pdsch_free(q); } return ret; } void pdsch_free(pdsch_t *q) { int i; if (q->cb_in) { free(q->cb_in); } if (q->cb_out) { free(q->cb_out); } if (q->pdsch_e) { free(q->pdsch_e); } if (q->pdsch_d) { free(q->pdsch_d); } for (i = 0; i < q->cell.nof_ports; i++) { if (q->ce[i]) { free(q->ce[i]); } if (q->pdsch_x[i]) { free(q->pdsch_x[i]); } if (q->pdsch_symbols[i]) { free(q->pdsch_symbols[i]); } } for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { sequence_free(&q->seq_pdsch[i]); } for (i = 0; i < 4; i++) { modem_table_free(&q->mod[i]); } tdec_free(&q->decoder); tcod_free(&q->encoder); precoding_free(&q->precoding); bzero(q, sizeof(pdsch_t)); } int pdsch_set_rnti(pdsch_t *q, uint16_t rnti) { uint32_t i; for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { if (sequence_pdsch(&q->seq_pdsch[i], rnti, 0, 2 * i, q->cell.id, q->max_symbols * q->mod[3].nbits_x_symbol)) { return LIBLTE_ERROR; } } q->rnti_is_set = true; q->rnti = rnti; return LIBLTE_SUCCESS; } /* Calculate Codeblock Segmentation as in Section 5.1.2 of 36.212 */ static int codeblock_segmentation(struct cb_segm *s, uint32_t tbs) { uint32_t Bp, B, idx1; int ret; B = tbs + 24; /* Calculate CB sizes */ if (B < 6114) { s->C = 1; Bp = B; } else { s->C = (uint32_t) ceilf((float) B / (6114 - 24)); Bp = B + 24 * s->C; } ret = lte_find_cb_index(Bp / s->C); if (ret != LIBLTE_ERROR) { idx1 = (uint32_t) ret; ret = lte_cb_size(idx1); if (ret != LIBLTE_ERROR) { s->K1 = (uint32_t) ret; ret = lte_cb_size(idx1 - 1); if (ret != LIBLTE_ERROR) { if (s->C == 1) { s->K2 = 0; s->C2 = 0; s->C1 = 1; } else { s->K2 = (uint32_t) ret; s->C2 = (s->C * s->K1 - Bp) / (s->K1 - s->K2); s->C1 = s->C - s->C2; } s->F = s->C1 * s->K1 + s->C2 * s->K2 - Bp; INFO("CB Segmentation: TBS: %d, C=%d, C+=%d K+=%d, C-=%d, K-=%d, F=%d, Bp=%d\n", tbs, s->C, s->C1, s->K1, s->C2, s->K2, s->F, Bp); } } } return ret; } int pdsch_harq_init(pdsch_harq_t *p, pdsch_t *pdsch) { int ret = LIBLTE_ERROR_INVALID_INPUTS; if (p != NULL) { uint32_t i; bzero(p, sizeof(pdsch_harq_t)); p->cell = pdsch->cell; ret = ra_tbs_from_idx(26, p->cell.nof_prb); if (ret != LIBLTE_ERROR) { p->max_cb = (uint32_t) ret / (6114 - 24) + 1; p->pdsch_w_buff_f = malloc(sizeof(float*) * p->max_cb); if (!p->pdsch_w_buff_f) { perror("malloc"); return LIBLTE_ERROR; } p->pdsch_w_buff_c = malloc(sizeof(uint8_t*) * p->max_cb); if (!p->pdsch_w_buff_c) { perror("malloc"); return LIBLTE_ERROR; } // We add 50 % larger buffer to the maximum expected bits per subframe // FIXME: Use HARQ buffer limitation based on UE category p->w_buff_size = p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp) * 6 * 2 / p->max_cb; for (i=0;imax_cb;i++) { p->pdsch_w_buff_f[i] = malloc(sizeof(float) * p->w_buff_size); if (!p->pdsch_w_buff_f[i]) { perror("malloc"); return LIBLTE_ERROR; } p->pdsch_w_buff_c[i] = malloc(sizeof(uint8_t) * p->w_buff_size); if (!p->pdsch_w_buff_c[i]) { perror("malloc"); return LIBLTE_ERROR; } } ret = LIBLTE_SUCCESS; } } return ret; } void pdsch_harq_free(pdsch_harq_t *p) { if (p) { uint32_t i; if (p->pdsch_w_buff_f) { for (i=0;imax_cb;i++) { if (p->pdsch_w_buff_f[i]) { free(p->pdsch_w_buff_f[i]); } } free(p->pdsch_w_buff_f); } if (p->pdsch_w_buff_c) { for (i=0;imax_cb;i++) { if (p->pdsch_w_buff_c[i]) { free(p->pdsch_w_buff_c[i]); } } free(p->pdsch_w_buff_c); } bzero(p, sizeof(pdsch_harq_t)); } } int pdsch_harq_setup(pdsch_harq_t *p, ra_mcs_t mcs, ra_prb_t *prb_alloc) { int ret = LIBLTE_ERROR_INVALID_INPUTS; if (p != NULL && mcs.tbs > 0) { uint32_t nof_bits, nof_bits_e, nof_symbols; p->mcs = mcs; memcpy(&p->prb_alloc, prb_alloc, sizeof(ra_prb_t)); codeblock_segmentation(&p->cb_segm, mcs.tbs); nof_bits = mcs.tbs; nof_symbols = prb_alloc->re_sf[1]; // Any subframe except 0 and 5 has maximum RE nof_bits_e = nof_symbols * lte_mod_bits_x_symbol(mcs.mod); if (nof_bits > nof_bits_e) { fprintf(stderr, "Invalid code rate %.2f\n", (float) nof_bits / nof_bits_e); return LIBLTE_ERROR; } if (nof_symbols > p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp)) { fprintf(stderr, "Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n", nof_symbols, p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp), p->cell.nof_prb); return LIBLTE_ERROR; } if (p->cb_segm.C > p->max_cb) { fprintf(stderr, "Codeblock segmentation returned more CBs (%d) than allocated (%d)\n", p->cb_segm.C, p->max_cb); return LIBLTE_ERROR; } ret = LIBLTE_SUCCESS; } return ret; } float pdsch_average_noi(pdsch_t *q) { return q->average_nof_iterations; } uint32_t pdsch_last_noi(pdsch_t *q) { return q->nof_iterations; } /* Decode a transport block according to 36.212 5.3.2 * */ int pdsch_decode_tb(pdsch_t *q, uint8_t *data, uint32_t tbs, uint32_t nb_e, pdsch_harq_t *harq_process, uint32_t rv_idx) { uint8_t parity[24]; uint8_t *p_parity = parity; uint32_t par_rx, par_tx; uint32_t i; uint32_t cb_len, rp, wp, rlen, F, n_e; float *e_bits = q->pdsch_e; if (q != NULL && data != NULL && nb_e < q->max_symbols * q->mod[3].nbits_x_symbol) { rp = 0; rp = 0; wp = 0; for (i = 0; i < harq_process->cb_segm.C; i++) { /* Get read/write lengths */ if (i < harq_process->cb_segm.C - harq_process->cb_segm.C2) { cb_len = harq_process->cb_segm.K1; } else { cb_len = harq_process->cb_segm.K2; } if (harq_process->cb_segm.C == 1) { rlen = cb_len; } else { rlen = cb_len - 24; } if (i == 0) { F = harq_process->cb_segm.F; } else { F = 0; } if (i < harq_process->cb_segm.C - 1) { n_e = nb_e / harq_process->cb_segm.C; } else { n_e = nb_e - rp; } DEBUG("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i, cb_len, rlen - F, wp, rp, F, n_e); /* Rate Unmatching */ if (rm_turbo_rx(harq_process->pdsch_w_buff_f[i], harq_process->w_buff_size, &e_bits[rp], n_e, (float*) q->cb_out, 3 * cb_len + 12, rv_idx)) { fprintf(stderr, "Error in rate matching\n"); return LIBLTE_ERROR; } /* Turbo Decoding with CRC-based early stopping */ q->nof_iterations = 0; bool early_stop = false; uint32_t len_crc; uint8_t *cb_in_ptr; crc_t *crc_ptr; tdec_reset(&q->decoder, cb_len); do { tdec_iteration(&q->decoder, (float*) q->cb_out, cb_len); q->nof_iterations++; if (harq_process->cb_segm.C > 1) { len_crc = cb_len; cb_in_ptr = q->cb_in; crc_ptr = &q->crc_cb; } else { len_crc = tbs+24; bzero(q->cb_in, F*sizeof(uint8_t)); cb_in_ptr = &q->cb_in[F]; crc_ptr = &q->crc_tb; } tdec_decision(&q->decoder, q->cb_in, cb_len); /* Check Codeblock CRC and stop early if incorrect */ if (!crc_checksum(crc_ptr, cb_in_ptr, len_crc)) { early_stop = true; } } while (q->nof_iterations < TDEC_MAX_ITERATIONS && !early_stop); q->average_nof_iterations = VEC_EMA((float) q->nof_iterations, q->average_nof_iterations, 0.2); /* Copy data to another buffer, removing the Codeblock CRC */ if (i < harq_process->cb_segm.C - 1) { memcpy(&data[wp], &q->cb_in[F], (rlen - F) * sizeof(uint8_t)); } else { DEBUG("Last CB, appending parity: %d to %d from %d and 24 from %d\n", rlen - F - 24, wp, F, rlen - 24); /* Append Transport Block parity bits to the last CB */ memcpy(&data[wp], &q->cb_in[F], (rlen - F - 24) * sizeof(uint8_t)); memcpy(parity, &q->cb_in[rlen - 24], 24 * sizeof(uint8_t)); } /* Set read/write pointers */ wp += (rlen - F); rp += n_e; } DEBUG("END CB#%d: wp: %d, rp: %d\n", i, wp, rp); // Compute transport block CRC par_rx = crc_checksum(&q->crc_tb, data, tbs); // check parity bits par_tx = bit_unpack(&p_parity, 24); if (!par_rx) { INFO("\n\tCAUTION!! Received all-zero transport block\n\n", 0); } if (par_rx == par_tx) { INFO("TB decoded OK\n",i); return LIBLTE_SUCCESS; } else { INFO("Error in TB parity\n",i); return LIBLTE_ERROR; } } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /** Decodes the PDSCH from the received symbols */ int pdsch_decode(pdsch_t *q, cf_t *sf_symbols, cf_t *ce[MAX_PORTS], float noise_estimate, uint8_t *data, uint32_t subframe, pdsch_harq_t *harq_process, uint32_t rv_idx) { /* Set pointers for layermapping & precoding */ uint32_t i, n; cf_t *x[MAX_LAYERS]; uint32_t nof_symbols, nof_bits, nof_bits_e; if (q != NULL && sf_symbols != NULL && data != NULL && subframe < 10 && harq_process != NULL && harq_process->mcs.mod > 0) { nof_bits = harq_process->mcs.tbs; nof_symbols = harq_process->prb_alloc.re_sf[subframe]; nof_bits_e = nof_symbols * q->mod[harq_process->mcs.mod - 1].nbits_x_symbol; INFO("Decoding PDSCH SF: %d, Mod %d, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", subframe, harq_process->mcs.mod, nof_bits, nof_symbols, nof_bits_e, rv_idx); /* number of layers equals number of ports */ for (i = 0; i < q->cell.nof_ports; i++) { x[i] = q->pdsch_x[i]; } memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports)); /* extract symbols */ n = pdsch_get(q, sf_symbols, q->pdsch_symbols[0], &harq_process->prb_alloc, subframe); if (n != nof_symbols) { fprintf(stderr, "Error expecting %d symbols but got %d\n", nof_symbols, n); return LIBLTE_ERROR; } /* extract channel estimates */ for (i = 0; i < q->cell.nof_ports; i++) { n = pdsch_get(q, ce[i], q->ce[i], &harq_process->prb_alloc, subframe); if (n != nof_symbols) { fprintf(stderr, "Error expecting %d symbols but got %d\n", nof_symbols, n); return LIBLTE_ERROR; } } /* TODO: only diversity is supported */ if (q->cell.nof_ports == 1) { /* no need for layer demapping */ predecoding_single(&q->precoding, q->pdsch_symbols[0], q->ce[0], q->pdsch_d, nof_symbols, noise_estimate); } else { predecoding_diversity(&q->precoding, q->pdsch_symbols[0], q->ce, x, q->cell.nof_ports, nof_symbols, noise_estimate); layerdemap_diversity(x, q->pdsch_d, q->cell.nof_ports, nof_symbols / q->cell.nof_ports); } /* demodulate symbols * The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation, * thus we don't need tot set it in the LLRs normalization */ demod_soft_sigma_set(&q->demod, 1);//q->mod[harq_process->mcs.mod - 1].nbits_x_symbol); demod_soft_table_set(&q->demod, &q->mod[harq_process->mcs.mod - 1]); demod_soft_demodulate(&q->demod, q->pdsch_d, q->pdsch_e, nof_symbols); /* descramble */ scrambling_f_offset(&q->seq_pdsch[subframe], q->pdsch_e, 0, nof_bits_e); return pdsch_decode_tb(q, data, nof_bits, nof_bits_e, harq_process, rv_idx); } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /* Encode a transport block according to 36.212 5.3.2 * */ int pdsch_encode_tb(pdsch_t *q, uint8_t *data, uint32_t tbs, uint32_t nb_e, pdsch_harq_t *harq_process, uint32_t rv_idx) { uint8_t parity[24]; uint8_t *p_parity = parity; uint32_t par; uint32_t i; uint32_t cb_len, rp, wp, rlen, F, n_e; uint8_t *e_bits = q->pdsch_e; int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && data != NULL && nb_e < q->max_symbols * q->mod[3].nbits_x_symbol) { if (q->rnti_is_set) { if (rv_idx == 0) { /* Compute transport block CRC */ par = crc_checksum(&q->crc_tb, data, tbs); /* parity bits will be appended later */ bit_pack(par, &p_parity, 24); if (VERBOSE_ISDEBUG()) { DEBUG("DATA: ", 0); vec_fprint_b(stdout, data, tbs); DEBUG("PARITY: ", 0); vec_fprint_b(stdout, parity, 24); } /* Add filler bits to the new data buffer */ for (i = 0; i < harq_process->cb_segm.F; i++) { q->cb_in[i] = LTE_NULL_BIT; } } wp = 0; rp = 0; for (i = 0; i < harq_process->cb_segm.C; i++) { /* Get read lengths */ if (i < harq_process->cb_segm.C - harq_process->cb_segm.C2) { cb_len = harq_process->cb_segm.K1; } else { cb_len = harq_process->cb_segm.K2; } if (harq_process->cb_segm.C > 1) { rlen = cb_len - 24; } else { rlen = cb_len; } if (i == 0) { F = harq_process->cb_segm.F; } else { F = 0; } if (i < harq_process->cb_segm.C - 1) { n_e = nb_e / harq_process->cb_segm.C; } else { n_e = nb_e - wp; } INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i, cb_len, rlen - F, wp, rp, F, n_e); if (rv_idx == 0) { /* Copy data to another buffer, making space for the Codeblock CRC */ if (i < harq_process->cb_segm.C - 1) { memcpy(&q->cb_in[F], &data[rp], (rlen - F) * sizeof(uint8_t)); } else { INFO("Last CB, appending parity: %d from %d and 24 to %d\n", rlen - F - 24, rp, rlen - 24); /* Append Transport Block parity bits to the last CB */ memcpy(&q->cb_in[F], &data[rp], (rlen - F - 24) * sizeof(uint8_t)); memcpy(&q->cb_in[rlen - 24], parity, 24 * sizeof(uint8_t)); } if (harq_process->cb_segm.C > 1) { /* Attach Codeblock CRC */ crc_attach(&q->crc_cb, q->cb_in, rlen); } if (VERBOSE_ISDEBUG()) { DEBUG("CB#%d Len=%d: ", i, cb_len); vec_fprint_b(stdout, q->cb_in, cb_len); } /* Turbo Encoding */ tcod_encode(&q->encoder, q->cb_in, (uint8_t*) q->cb_out, cb_len); } /* Rate matching */ if (rm_turbo_tx(harq_process->pdsch_w_buff_c[i], harq_process->w_buff_size, (uint8_t*) q->cb_out, 3 * cb_len + 12, &e_bits[wp], n_e, rv_idx)) { fprintf(stderr, "Error in rate matching\n"); return LIBLTE_ERROR; } /* Set read/write pointers */ rp += (rlen - F); wp += n_e; } INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp); ret = LIBLTE_SUCCESS; } else { fprintf(stderr, "Must call pdsch_set_rnti() to set the encoder/decoder RNTI\n"); } } return ret; } /** Converts the PDSCH data bits to symbols mapped to the slot ready for transmission */ int pdsch_encode(pdsch_t *q, uint8_t *data, cf_t *sf_symbols[MAX_PORTS], uint32_t subframe, pdsch_harq_t *harq_process, uint32_t rv_idx) { int i; uint32_t nof_symbols, nof_bits, nof_bits_e; /* Set pointers for layermapping & precoding */ cf_t *x[MAX_LAYERS]; int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && data != NULL && subframe < 10 && harq_process != NULL) { if (q->rnti_is_set) { for (i=0;icell.nof_ports;i++) { if (sf_symbols[i] == NULL) { return LIBLTE_ERROR_INVALID_INPUTS; } } nof_bits = harq_process->mcs.tbs; nof_symbols = harq_process->prb_alloc.re_sf[subframe]; nof_bits_e = nof_symbols * q->mod[harq_process->mcs.mod - 1].nbits_x_symbol; if (harq_process->mcs.tbs == 0) { return LIBLTE_ERROR_INVALID_INPUTS; } if (nof_bits > nof_bits_e) { fprintf(stderr, "Invalid code rate %.2f\n", (float) nof_bits / nof_bits_e); return LIBLTE_ERROR_INVALID_INPUTS; } if (nof_symbols > q->max_symbols) { fprintf(stderr, "Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n", nof_symbols, q->max_symbols, q->cell.nof_prb); return LIBLTE_ERROR_INVALID_INPUTS; } INFO("Encoding PDSCH SF: %d, Mod %d, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", subframe, harq_process->mcs.mod, nof_bits, nof_symbols, nof_bits_e, rv_idx); /* number of layers equals number of ports */ for (i = 0; i < q->cell.nof_ports; i++) { x[i] = q->pdsch_x[i]; } memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports)); if (pdsch_encode_tb(q, data, nof_bits, nof_bits_e, harq_process, rv_idx)) { fprintf(stderr, "Error encoding TB\n"); return LIBLTE_ERROR; } scrambling_b_offset(&q->seq_pdsch[subframe], (uint8_t*) q->pdsch_e, 0, nof_bits_e); mod_modulate(&q->mod[harq_process->mcs.mod - 1], (uint8_t*) q->pdsch_e, q->pdsch_d, nof_bits_e); /* TODO: only diversity supported */ if (q->cell.nof_ports > 1) { layermap_diversity(q->pdsch_d, x, q->cell.nof_ports, nof_symbols); precoding_diversity(&q->precoding, x, q->pdsch_symbols, q->cell.nof_ports, nof_symbols / q->cell.nof_ports); } else { memcpy(q->pdsch_symbols[0], q->pdsch_d, nof_symbols * sizeof(cf_t)); } /* mapping to resource elements */ for (i = 0; i < q->cell.nof_ports; i++) { pdsch_put(q, q->pdsch_symbols[i], sf_symbols[i], &harq_process->prb_alloc, subframe); } ret = LIBLTE_SUCCESS; } else { fprintf(stderr, "Must call pdsch_set_rnti() to set the encoder/decoder RNTI\n"); } } return ret; }