/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/phy/ch_estimation/chest_sl.h" #include "srslte/phy/common/phy_common.h" #include "srslte/phy/dft/ofdm.h" #include "srslte/phy/phch/pscch.h" #include "srslte/phy/phch/sci.h" #include "srslte/phy/rf/rf.h" #include "srslte/phy/ue/ue_sync.h" #include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/vector.h" #include #include #include #include #include #include #include #include uint32_t nof_ports = 1; static bool keep_running = true; char* output_file_name; static char rf_devname[64] = ""; static char rf_args[64] = "auto"; float rf_gain = 40.0, rf_freq = -1.0; int nof_rx_antennas = 1; srslte_cell_sl_t sl_cell = {.nof_prb = 50, .tm = SRSLTE_SIDELINK_TM4, .cp = SRSLTE_CP_NORM, .N_sl_id = 168}; uint32_t size_sub_channel = 10; uint32_t num_sub_channel = 5; uint32_t prb_idx = 20; bool use_standard_lte_rates = false; bool disable_plots = false; srslte_pscch_t pscch; ///< Defined global for plotting thread #ifdef ENABLE_GUI #include "srsgui/srsgui.h" void init_plots(); pthread_t plot_thread; sem_t plot_sem; #endif // ENABLE_GUI void sig_int_handler(int signo) { printf("SIGINT received. Exiting...\n"); if (signo == SIGINT) { keep_running = false; } else if (signo == SIGSEGV) { exit(1); } } void usage(char* prog) { printf("Usage: %s [agrnv] -f rx_frequency_hz\n", prog); printf("\t-a RF args [Default %s]\n", rf_args); printf("\t-d RF devicename [Default %s]\n", rf_devname); printf("\t-g RF Gain [Default %.2f dB]\n", rf_gain); printf("\t-A nof_rx_antennas [Default %d]\n", nof_rx_antennas); printf("\t-c N_sl_id [Default %d]\n", sl_cell.N_sl_id); printf("\t-p nof_prb [Default %d]\n", sl_cell.nof_prb); printf("\t-x prb_idx [Default %i]\n", prb_idx); printf("\t-r use_standard_lte_rates [Default %i]\n", use_standard_lte_rates); #ifdef ENABLE_GUI printf("\t-w disable plots [Default enabled]\n"); #endif printf("\t-v srslte_verbose\n"); } void parse_args(int argc, char** argv) { int opt; while ((opt = getopt(argc, argv, "acdgpvwrxfA")) != -1) { switch (opt) { case 'a': strncpy(rf_args, argv[optind], 63); rf_args[63] = '\0'; break; case 'c': sl_cell.N_sl_id = atoi(argv[optind]); break; case 'd': strncpy(rf_devname, argv[optind], 63); rf_devname[63] = '\0'; break; case 'g': rf_gain = atof(argv[optind]); break; case 'p': sl_cell.nof_prb = atoi(argv[optind]); break; case 'f': rf_freq = atof(argv[optind]); break; case 'A': nof_rx_antennas = atoi(argv[optind]); break; case 'v': srslte_verbose++; break; case 'w': disable_plots = true; break; case 'r': use_standard_lte_rates = true; break; case 'x': prb_idx = atoi(argv[optind]); break; default: usage(argv[0]); exit(-1); } } if (rf_freq < 0) { usage(argv[0]); exit(-1); } } int srslte_rf_recv_wrapper(void* h, cf_t* data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* t) { DEBUG(" ---- Receive %d samples ---- \n", nsamples); void* ptr[SRSLTE_MAX_PORTS]; for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { ptr[i] = data[i]; } return srslte_rf_recv_with_time_multi(h, ptr, nsamples, true, &t->full_secs, &t->frac_secs); } int main(int argc, char** argv) { signal(SIGINT, sig_int_handler); sigset_t sigset; sigemptyset(&sigset); sigaddset(&sigset, SIGINT); sigprocmask(SIG_UNBLOCK, &sigset, NULL); parse_args(argc, argv); srslte_use_standard_symbol_size(use_standard_lte_rates); printf("Opening RF device...\n"); srslte_rf_t rf; if (srslte_rf_open_multi(&rf, rf_args, nof_rx_antennas)) { ERROR("Error opening rf\n"); exit(-1); } printf("Set RX freq: %.6f MHz\n", srslte_rf_set_rx_freq(&rf, nof_rx_antennas, rf_freq) / 1000000); printf("Set RX gain: %.1f dB\n", srslte_rf_set_rx_gain(&rf, rf_gain)); int srate = srslte_sampling_freq_hz(sl_cell.nof_prb); if (srate != -1) { printf("Setting sampling rate %.2f MHz\n", (float)srate / 1000000); float srate_rf = srslte_rf_set_rx_srate(&rf, (double)srate); if (srate_rf != srate) { ERROR("Could not set sampling rate\n"); exit(-1); } } else { ERROR("Invalid number of PRB %d\n", sl_cell.nof_prb); exit(-1); } // allocate Rx buffers for 1ms worth of samples uint32_t sf_len = SRSLTE_SF_LEN_PRB(sl_cell.nof_prb); printf("Using a SF len of %d samples\n", sf_len); cf_t* rx_buffer[SRSLTE_MAX_PORTS] = {NULL}; //< For radio to receive samples cf_t* sf_buffer[SRSLTE_MAX_PORTS] = {NULL}; ///< For OFDM object to store subframe after FFT for (int i = 0; i < nof_rx_antennas; i++) { rx_buffer[i] = srslte_vec_cf_malloc(sf_len); if (!rx_buffer[i]) { perror("malloc"); exit(-1); } sf_buffer[i] = srslte_vec_cf_malloc(sf_len); if (!sf_buffer[i]) { perror("malloc"); exit(-1); } } uint32_t sf_n_re = SRSLTE_CP_NSYMB(SRSLTE_CP_NORM) * SRSLTE_NRE * 2 * sl_cell.nof_prb; cf_t* equalized_sf_buffer = srslte_vec_malloc(sizeof(cf_t) * sf_n_re); // RX srslte_ofdm_t fft; if (srslte_ofdm_rx_init(&fft, sl_cell.cp, rx_buffer[0], sf_buffer[0], sl_cell.nof_prb)) { fprintf(stderr, "Error creating FFT object\n"); return SRSLTE_ERROR; } srslte_ofdm_set_normalize(&fft, true); srslte_ofdm_set_freq_shift(&fft, -0.5); // PSCCH Channel estimation srslte_chest_sl_t pscch_chest; srslte_chest_sl_init_pscch_dmrs(&pscch_chest); // init PSCCH object if (srslte_pscch_init(&pscch, SRSLTE_MAX_PRB) != SRSLTE_SUCCESS) { ERROR("Error in PSCCH init\n"); return SRSLTE_ERROR; } if (srslte_pscch_set_cell(&pscch, sl_cell) != SRSLTE_SUCCESS) { ERROR("Error in PSCCH set cell\n"); return SRSLTE_ERROR; } srslte_sci_t sci; srslte_sci_init(&sci, sl_cell.nof_prb, sl_cell.tm, size_sub_channel, num_sub_channel); srslte_ue_sync_t sync; if (srslte_ue_sync_init_multi_decim_mode( &sync, SRSLTE_MAX_PRB, false, srslte_rf_recv_wrapper, nof_rx_antennas, (void*)&rf, 1.0, SYNC_MODE_GNSS)) { fprintf(stderr, "Error initiating sync_gnss\n"); exit(-1); } srslte_cell_t cell = {}; cell.nof_prb = sl_cell.nof_prb; if (srslte_ue_sync_set_cell(&sync, cell)) { ERROR("Error initiating ue_sync\n"); exit(-1); } #ifdef ENABLE_GUI if (!disable_plots) { init_plots(&pscch); sleep(1); } #endif // after configuring RF params and before starting streamer, set device to GPS time srslte_rf_sync(&rf); // start streaming srslte_rf_start_rx_stream(&rf, false); uint32_t num_decoded_sci = 0; uint32_t subframe_count = 0; while (keep_running) { // receive subframe int ret = srslte_ue_sync_zerocopy(&sync, rx_buffer, sf_len); if (ret < 0) { ERROR("Error calling srslte_ue_sync_work()\n"); } if (subframe_count == 0) { // print timestamp of the first samples srslte_timestamp_t ts_rx; srslte_ue_sync_get_last_timestamp(&sync, &ts_rx); printf("Received samples start at %ld + %.10f. TTI=%d.%d\n", ts_rx.full_secs, ts_rx.frac_secs, srslte_ue_sync_get_sfn(&sync), srslte_ue_sync_get_sfidx(&sync)); } // do FFT srslte_ofdm_rx_sf(&fft); for (int i = 0; i < num_sub_channel; i++) { uint32_t pscch_prb_idx = size_sub_channel * i; for (uint32_t cyclic_shift = 0; cyclic_shift <= 9; cyclic_shift += 3) { uint8_t sci_rx[SRSLTE_SCI_MAX_LEN] = {}; char sci_msg[SRSLTE_SCI_MSG_MAX_LEN] = {}; // PSCCH Channel estimation srslte_chest_sl_gen_pscch_dmrs(&pscch_chest, cyclic_shift, sl_cell.tm); srslte_chest_sl_pscch_ls_estimate_equalize( &pscch_chest, sf_buffer[0], pscch_prb_idx, equalized_sf_buffer, sl_cell.nof_prb, sl_cell.tm, sl_cell.cp); if (srslte_pscch_decode(&pscch, equalized_sf_buffer, sci_rx, pscch_prb_idx) == SRSLTE_SUCCESS) { if (srslte_sci_format1_unpack(&sci, sci_rx) != SRSLTE_SUCCESS) { printf("Error unpacking sci format 1\n"); return SRSLTE_ERROR; } srslte_sci_info(sci_msg, &sci); fprintf(stdout, "%s", sci_msg); num_decoded_sci++; // plot PSCCH #ifdef ENABLE_GUI if (!disable_plots) { sem_post(&plot_sem); } #endif } if (SRSLTE_VERBOSE_ISDEBUG()) { char filename[64]; snprintf( filename, 64, "pscch_rx_syms_sf%d_shift%d_prbidx%d.bin", subframe_count, cyclic_shift, pscch_prb_idx); printf("Saving PSCCH symbols (%d) to %s\n", pscch.E / SRSLTE_PSCCH_QM, filename); srslte_vec_save_file(filename, pscch.mod_symbols, pscch.E / SRSLTE_PSCCH_QM * sizeof(cf_t)); } } } subframe_count++; } printf("Processed %d subframes.\n", subframe_count); #ifdef ENABLE_GUI if (!disable_plots) { sem_post(&plot_sem); usleep(1000); if (!pthread_kill(plot_thread, 0)) { pthread_kill(plot_thread, SIGHUP); pthread_join(plot_thread, NULL); } } sdrgui_exit(); #endif srslte_rf_stop_rx_stream(&rf); srslte_rf_close(&rf); srslte_ue_sync_free(&sync); srslte_sci_free(&sci); srslte_pscch_free(&pscch); srslte_chest_sl_free(&pscch_chest); for (int i = 0; i < nof_rx_antennas; i++) { if (rx_buffer[i]) { free(rx_buffer[i]); } if (sf_buffer[i]) { free(sf_buffer[i]); } } if (equalized_sf_buffer) { free(equalized_sf_buffer); } return SRSLTE_SUCCESS; } ///< Plotting Functions #ifdef ENABLE_GUI plot_scatter_t pscatequal_pscch; void* plot_thread_run(void* arg) { sdrgui_init(); plot_scatter_init(&pscatequal_pscch); plot_scatter_setTitle(&pscatequal_pscch, "PSCCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pscch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pscch, -4, 4); plot_scatter_addToWindowGrid(&pscatequal_pscch, (char*)"pssch_ue", 0, 0); while (keep_running) { sem_wait(&plot_sem); plot_scatter_setNewData(&pscatequal_pscch, pscch.mod_symbols, pscch.nof_tx_re); } return NULL; } void init_plots() { if (sem_init(&plot_sem, 0, 0)) { perror("sem_init"); exit(-1); } pthread_attr_t attr; struct sched_param param; param.sched_priority = 0; pthread_attr_init(&attr); pthread_attr_setschedpolicy(&attr, SCHED_OTHER); pthread_attr_setschedparam(&attr, ¶m); if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) { perror("pthread_create"); exit(-1); } } #endif // ENABLE_GUI