/** * * \section COPYRIGHT * * Copyright 2013-2020 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSLTE_WIENER_DL_H_ #define SRSLTE_WIENER_DL_H_ #include #include #include #include // Constant static parameters #define SRSLTE_WIENER_DL_HLS_FIFO_SIZE (8U) #define SRSLTE_WIENER_DL_MIN_PRB (4U) #define SRSLTE_WIENER_DL_MIN_RE (SRSLTE_WIENER_DL_MIN_PRB * SRSLTE_NRE) #define SRSLTE_WIENER_DL_MIN_REF (SRSLTE_WIENER_DL_MIN_PRB * 2U) #define SRSLTE_WIENER_DL_TFIFO_SIZE (2U) #define SRSLTE_WIENER_DL_XFIFO_SIZE (400U) #define SRSLTE_WIENER_DL_TIMEFIFO_SIZE (32U) #define SRSLTE_WIENER_DL_CXFIFO_SIZE (400U) typedef struct { cf_t* hls_fifo_1[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on odd pilots cf_t* hls_fifo_2[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on even pilots cf_t* tfifo[SRSLTE_WIENER_DL_TFIFO_SIZE]; // memory for time domain channel linear interpolation cf_t* xfifo[SRSLTE_WIENER_DL_XFIFO_SIZE]; // fifo for averaging the frequency correlation vectors cf_t cV[SRSLTE_WIENER_DL_MIN_RE]; // frequency correlation vector among all subcarriers float deltan; // step within time domain linear interpolation uint32_t nfifosamps; // number of samples inside the fifo for averaging the correlation vectors float invtpilotoff; // step for time domain linear interpolation cf_t* timefifo; // fifo for storing single frequency channel time domain evolution cf_t* cxfifo[SRSLTE_WIENER_DL_CXFIFO_SIZE]; // fifo for averaging time domain channel correlation vector uint32_t sumlen; // length of dynamic average window for time domain channel correlation vector uint32_t skip; // pilot OFDM symbols to skip when training Wiener matrices (skip = 1,..,4) uint32_t cnt; // counter for skipping pilot OFDM symbols } srslte_wiener_dl_state_t; typedef struct { // Maximum allocated number of... uint32_t max_prb; // Resource Blocks uint32_t max_ref; // Reference signals uint32_t max_re; // Resource Elements (equivalent to sub-carriers) uint32_t max_tx_ports; // Tx Ports uint32_t max_rx_ant; // Rx Antennas // Configured number of... uint32_t nof_prb; // Resource Blocks uint32_t nof_ref; // Reference signals uint32_t nof_re; // Resource Elements (equivalent to sub-carriers) uint32_t nof_tx_ports; // Tx Ports uint32_t nof_rx_ant; // Rx Antennas // One state per possible channel (allocated in init) srslte_wiener_dl_state_t* state[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS]; // Wiener matrices cf_t wm1[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF]; cf_t wm2[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF]; bool wm_computed; bool ready; // Calculation support cf_t hlsv[SRSLTE_WIENER_DL_MIN_RE]; cf_t hlsv_sum[SRSLTE_WIENER_DL_MIN_RE]; cf_t acV[SRSLTE_WIENER_DL_MIN_RE]; union { cf_t m[SRSLTE_WIENER_DL_MIN_REF][SRSLTE_WIENER_DL_MIN_REF]; cf_t v[SRSLTE_WIENER_DL_MIN_REF * SRSLTE_WIENER_DL_MIN_REF]; } RH; union { cf_t m[SRSLTE_WIENER_DL_MIN_REF][SRSLTE_WIENER_DL_MIN_REF]; cf_t v[SRSLTE_WIENER_DL_MIN_REF * SRSLTE_WIENER_DL_MIN_REF]; } invRH; cf_t hH1[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF]; cf_t hH2[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF]; // Temporal vector cf_t* tmp; // Random generator srslte_random_t random; // FFT/iFFT srslte_dft_plan_t fft; srslte_dft_plan_t ifft; cf_t filter[SRSLTE_WIENER_DL_MIN_RE]; // Matrix inverter void* matrix_inverter; } srslte_wiener_dl_t; SRSLTE_API int srslte_wiener_dl_init(srslte_wiener_dl_t* q, uint32_t max_prb, uint32_t max_tx_ports, uint32_t max_rx_ant); SRSLTE_API int srslte_wiener_dl_set_cell(srslte_wiener_dl_t* q, srslte_cell_t cell); SRSLTE_API void srslte_wiener_dl_reset(srslte_wiener_dl_t* q); SRSLTE_API int srslte_wiener_dl_run(srslte_wiener_dl_t* q, uint32_t tx, uint32_t rx, uint32_t m, uint32_t shift, cf_t* pilots, cf_t* estimated, float snr_lin); SRSLTE_API void srslte_wiener_dl_free(srslte_wiener_dl_t* q); #endif // SRSLTE_WIENER_DL_H_