/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsran/phy/gnb/gnb_dl.h" #include "srsran/phy/phch/ra_dl_nr.h" #include "srsran/phy/phch/ra_nr.h" #include "srsran/phy/ue/ue_dl_nr.h" #include "srsran/phy/utils/debug.h" #include "srsran/phy/utils/random.h" #include "srsran/phy/utils/vector.h" #include static srsran_carrier_nr_t carrier = SRSRAN_DEFAULT_CARRIER_NR; static uint32_t n_prb = 0; // Set to 0 for steering static uint32_t mcs = 30; // Set to 30 for steering static srsran_sch_cfg_nr_t pdsch_cfg = {}; static uint32_t nof_slots = 10; static uint32_t rv_idx = 0; static uint32_t delay_n = 0; // Integer delay static float cfo_hz = 0.0f; // CFO Hz static srsran_dmrs_sch_type_t dmrs_type = srsran_dmrs_sch_type_1; static srsran_dmrs_sch_add_pos_t dmrs_add_pos = srsran_dmrs_sch_add_pos_2; static bool interleaved_pdcch = false; static void usage(char* prog) { printf("Usage: %s [rRPdpmnTILDCv] \n", prog); printf("\t-P Number of BWP (Carrier) PRB [Default %d]\n", carrier.nof_prb); printf("\t-p Number of grant PRB, set to 0 for steering [Default %d]\n", n_prb); printf("\t-n Number of slots to simulate [Default %d]\n", nof_slots); printf("\t-m MCS PRB, set to >28 for steering [Default %d]\n", mcs); printf("\t-r Redundancy version, set to >28 for steering [Default %d]\n", mcs); printf("\t-d DMRS configuration [type 1-2] [add_pos 2-3] [CDM groups 1-3] [Default %d]\n", mcs); printf("\t-T Provide MCS table (64qam, 256qam, 64qamLowSE) [Default %s]\n", srsran_mcs_table_to_str(pdsch_cfg.sch_cfg.mcs_table)); printf("\t-R Reserve RE: [rb_begin] [rb_end] [rb_stride] [sc_mask] [symbol_mask]\n"); printf("\t-I Enable interleaved CCE-to-REG [Default %s]\n", interleaved_pdcch ? "Enabled" : "Disabled"); printf("\t-L Provide number of layers [Default %d]\n", carrier.max_mimo_layers); printf("\t-D Delay signal an integer number of samples [Default %d samples]\n", delay_n); printf("\t-C Frequency shift (CFO) signal in Hz [Default %+.0f Hz]\n", cfo_hz); printf("\t-v [set srsran_verbose to debug, default none]\n"); } static int parse_args(int argc, char** argv) { int opt; while ((opt = getopt(argc, argv, "rRIPdpmnTLDCv")) != -1) { switch (opt) { case 'P': carrier.nof_prb = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'p': n_prb = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'n': nof_slots = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'm': mcs = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'r': rv_idx = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'd': switch (strtol(argv[optind++], NULL, 10)) { case 1: dmrs_type = srsran_dmrs_sch_type_1; break; case 2: dmrs_type = srsran_dmrs_sch_type_2; break; } switch (strtol(argv[optind], NULL, 10)) { case 0: dmrs_add_pos = srsran_dmrs_sch_add_pos_0; break; case 1: dmrs_add_pos = srsran_dmrs_sch_add_pos_1; break; case 2: dmrs_add_pos = srsran_dmrs_sch_add_pos_2; break; case 3: dmrs_add_pos = srsran_dmrs_sch_add_pos_3; break; } break; case 'T': pdsch_cfg.sch_cfg.mcs_table = srsran_mcs_table_from_str(argv[optind]); break; case 'R': { srsran_re_pattern_t pattern = {}; pattern.rb_begin = (uint32_t)strtol(argv[optind++], NULL, 10); pattern.rb_end = (uint32_t)strtol(argv[optind++], NULL, 10); pattern.rb_stride = (uint32_t)strtol(argv[optind++], NULL, 10); uint32_t sc_mask = (uint32_t)strtol(argv[optind++], NULL, 2); for (uint32_t i = 0; i < SRSRAN_NRE; i++) { pattern.sc[i] = ((sc_mask >> (SRSRAN_NRE - 1U - i)) & 0x1) == 0x1; } uint32_t symbol_mask = (uint32_t)strtol(argv[optind], NULL, 2); for (uint32_t i = 0; i < SRSRAN_NSYMB_PER_SLOT_NR; i++) { pattern.symbol[i] = ((symbol_mask >> (SRSRAN_NSYMB_PER_SLOT_NR - 1U - i)) & 0x1) == 0x1; } if (srsran_re_pattern_merge(&pdsch_cfg.rvd_re, &pattern) < SRSRAN_ERROR) { ERROR("Error adding pattern"); return SRSRAN_ERROR; } } break; case 'I': interleaved_pdcch ^= true; break; case 'L': carrier.max_mimo_layers = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'D': delay_n = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'C': cfo_hz = strtof(argv[optind], NULL); break; case 'v': srsran_verbose++; break; default: usage(argv[0]); return SRSRAN_ERROR; } } return SRSRAN_SUCCESS; } static int work_gnb_dl(srsran_gnb_dl_t* gnb_dl, srsran_slot_cfg_t* slot, srsran_search_space_t* search_space, srsran_dci_location_t* dci_location, uint8_t** data_tx) { if (srsran_gnb_dl_base_zero(gnb_dl) < SRSRAN_SUCCESS) { ERROR("Error setting base to zero"); return SRSRAN_ERROR; } // Hard-coded values srsran_dci_dl_nr_t dci_dl = {}; dci_dl.ctx.rnti = pdsch_cfg.grant.rnti; dci_dl.ctx.rnti_type = pdsch_cfg.grant.rnti_type; dci_dl.ctx.format = srsran_dci_format_nr_1_0; dci_dl.ctx.location = *dci_location; dci_dl.ctx.ss_type = search_space->type; dci_dl.ctx.coreset_id = 1; dci_dl.ctx.coreset_start_rb = 0; dci_dl.freq_domain_assigment = 0; dci_dl.time_domain_assigment = 0; dci_dl.vrb_to_prb_mapping = 0; dci_dl.mcs = mcs; dci_dl.rv = 0; // Put actual DCI if (srsran_gnb_dl_pdcch_put_dl(gnb_dl, slot, &dci_dl) < SRSRAN_SUCCESS) { ERROR("Error putting PDCCH"); return SRSRAN_ERROR; } // Put PDSCH transmission if (srsran_gnb_dl_pdsch_put(gnb_dl, slot, &pdsch_cfg, data_tx) < SRSRAN_SUCCESS) { ERROR("Error putting PDSCH"); return SRSRAN_ERROR; } srsran_gnb_dl_gen_signal(gnb_dl); return SRSRAN_SUCCESS; } static int work_ue_dl(srsran_ue_dl_nr_t* ue_dl, srsran_slot_cfg_t* slot, srsran_pdsch_res_nr_t* pdsch_res) { srsran_ue_dl_nr_estimate_fft(ue_dl, slot); srsran_dci_dl_nr_t dci_dl_rx = {}; int nof_found_dci = srsran_ue_dl_nr_find_dl_dci(ue_dl, slot, pdsch_cfg.grant.rnti, pdsch_cfg.grant.rnti_type, &dci_dl_rx, 1); if (nof_found_dci < SRSRAN_SUCCESS) { ERROR("Error decoding"); return SRSRAN_ERROR; } if (nof_found_dci < 1) { ERROR("Error DCI not found"); return SRSRAN_ERROR; } if (srsran_ue_dl_nr_decode_pdsch(ue_dl, slot, &pdsch_cfg, pdsch_res) < SRSRAN_SUCCESS) { ERROR("Error decoding"); return SRSRAN_ERROR; } return SRSRAN_SUCCESS; } int main(int argc, char** argv) { int ret = SRSRAN_ERROR; srsran_gnb_dl_t gnb_dl = {}; srsran_ue_dl_nr_t ue_dl = {}; srsran_pdsch_res_nr_t pdsch_res = {}; srsran_random_t rand_gen = srsran_random_init(1234); srsran_slot_cfg_t slot = {}; struct timeval t[3] = {}; uint64_t pdsch_encode_us = 0; uint64_t pdsch_decode_us = 0; uint64_t nof_bits = 0; uint8_t* data_tx[SRSRAN_MAX_TB] = {}; uint8_t* data_rx[SRSRAN_MAX_CODEWORDS] = {}; cf_t* buffer_gnb[SRSRAN_MAX_PORTS] = {}; cf_t* buffer_ue[SRSRAN_MAX_PORTS] = {}; // Set default PDSCH configuration if (parse_args(argc, argv) < SRSRAN_SUCCESS) { goto clean_exit; } uint32_t sf_len = SRSRAN_SF_LEN_PRB_NR(carrier.nof_prb); buffer_gnb[0] = srsran_vec_cf_malloc(sf_len); buffer_ue[0] = srsran_vec_cf_malloc(sf_len); if (buffer_gnb[0] == NULL || buffer_ue[0] == NULL) { ERROR("Error malloc"); goto clean_exit; } srsran_ue_dl_nr_args_t ue_dl_args = {}; ue_dl_args.nof_rx_antennas = 1; ue_dl_args.pdsch.sch.disable_simd = false; ue_dl_args.pdsch.sch.decoder_use_flooded = false; ue_dl_args.pdsch.measure_evm = true; ue_dl_args.pdcch.disable_simd = false; ue_dl_args.pdcch.measure_evm = true; ue_dl_args.nof_max_prb = carrier.nof_prb; srsran_gnb_dl_args_t gnb_dl_args = {}; gnb_dl_args.nof_tx_antennas = 1; gnb_dl_args.pdsch.sch.disable_simd = false; gnb_dl_args.pdcch.disable_simd = false; gnb_dl_args.nof_max_prb = carrier.nof_prb; gnb_dl_args.srate_hz = SRSRAN_SUBC_SPACING_NR(carrier.scs) * srsran_min_symbol_sz_rb(carrier.nof_prb); srsran_pdcch_cfg_nr_t pdcch_cfg = {}; // Configure CORESET srsran_coreset_t* coreset = &pdcch_cfg.coreset[1]; pdcch_cfg.coreset_present[1] = true; coreset->duration = 1; uint32_t coreset_bw_rb = carrier.nof_prb; if (interleaved_pdcch) { coreset->mapping_type = srsran_coreset_mapping_type_interleaved; coreset->reg_bundle_size = srsran_coreset_bundle_size_n6; coreset->interleaver_size = srsran_coreset_bundle_size_n2; coreset->precoder_granularity = srsran_coreset_precoder_granularity_reg_bundle; coreset->shift_index = carrier.pci; coreset_bw_rb = SRSRAN_FLOOR(carrier.nof_prb, 12) * 12; } for (uint32_t i = 0; i < SRSRAN_CORESET_FREQ_DOMAIN_RES_SIZE; i++) { coreset->freq_resources[i] = i < coreset_bw_rb / 6; } // Configure Search Space srsran_search_space_t* search_space = &pdcch_cfg.search_space[0]; pdcch_cfg.search_space_present[0] = true; search_space->id = 0; search_space->coreset_id = 1; search_space->type = srsran_search_space_type_common_3; search_space->formats[0] = srsran_dci_format_nr_0_0; search_space->formats[1] = srsran_dci_format_nr_1_0; search_space->nof_formats = 2; for (uint32_t L = 0; L < SRSRAN_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR; L++) { search_space->nof_candidates[L] = srsran_pdcch_nr_max_candidates_coreset(coreset, L); } if (srsran_ue_dl_nr_init(&ue_dl, buffer_ue, &ue_dl_args)) { ERROR("Error UE DL"); goto clean_exit; } if (srsran_gnb_dl_init(&gnb_dl, buffer_gnb, &gnb_dl_args)) { ERROR("Error UE DL"); goto clean_exit; } if (srsran_ue_dl_nr_set_carrier(&ue_dl, &carrier)) { ERROR("Error setting SCH NR carrier"); goto clean_exit; } srsran_dci_cfg_nr_t dci_cfg = {}; dci_cfg.bwp_dl_initial_bw = carrier.nof_prb; dci_cfg.bwp_ul_initial_bw = carrier.nof_prb; dci_cfg.monitor_common_0_0 = true; if (srsran_ue_dl_nr_set_pdcch_config(&ue_dl, &pdcch_cfg, &dci_cfg)) { ERROR("Error setting CORESET"); goto clean_exit; } if (srsran_gnb_dl_set_carrier(&gnb_dl, &carrier)) { ERROR("Error setting SCH NR carrier"); goto clean_exit; } if (srsran_gnb_dl_set_pdcch_config(&gnb_dl, &pdcch_cfg, &dci_cfg)) { ERROR("Error setting CORESET"); goto clean_exit; } for (uint32_t i = 0; i < 1; i++) { data_tx[i] = srsran_vec_u8_malloc(SRSRAN_SLOT_MAX_NOF_BITS_NR); data_rx[i] = srsran_vec_u8_malloc(SRSRAN_SLOT_MAX_NOF_BITS_NR); if (data_tx[i] == NULL || data_rx[i] == NULL) { ERROR("Error malloc"); goto clean_exit; } pdsch_res.tb[i].payload = data_rx[i]; } srsran_softbuffer_tx_t softbuffer_tx = {}; srsran_softbuffer_rx_t softbuffer_rx = {}; if (srsran_softbuffer_tx_init_guru(&softbuffer_tx, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) < SRSRAN_SUCCESS) { ERROR("Error init soft-buffer"); goto clean_exit; } if (srsran_softbuffer_rx_init_guru(&softbuffer_rx, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) < SRSRAN_SUCCESS) { ERROR("Error init soft-buffer"); goto clean_exit; } // Use grant default A time resources with m=0 pdsch_cfg.dmrs.type = dmrs_type; pdsch_cfg.dmrs.typeA_pos = srsran_dmrs_sch_typeA_pos_2; pdsch_cfg.dmrs.additional_pos = dmrs_add_pos; pdsch_cfg.grant.S = 1; pdsch_cfg.grant.L = 13; pdsch_cfg.grant.nof_layers = carrier.max_mimo_layers; pdsch_cfg.grant.dci_format = srsran_dci_format_nr_1_0; pdsch_cfg.grant.nof_dmrs_cdm_groups_without_data = 1; pdsch_cfg.grant.beta_dmrs = srsran_convert_dB_to_amplitude(3); pdsch_cfg.grant.rnti_type = srsran_rnti_type_c; pdsch_cfg.grant.rnti = 0x4601; pdsch_cfg.grant.tb[0].rv = rv_idx; uint32_t n_prb_start = 1; uint32_t n_prb_end = carrier.nof_prb + 1; if (n_prb > 0) { n_prb_start = SRSRAN_MIN(n_prb, n_prb_end - 1); n_prb_end = SRSRAN_MIN(n_prb + 1, n_prb_end); } uint32_t mcs_start = 0; uint32_t mcs_end = pdsch_cfg.sch_cfg.mcs_table == srsran_mcs_table_256qam ? 28 : 29; if (mcs < mcs_end) { mcs_start = SRSRAN_MIN(mcs, mcs_end - 1); mcs_end = SRSRAN_MIN(mcs + 1, mcs_end); } uint64_t slot_count = 0; for (slot.idx = 0; slot.idx < nof_slots; slot.idx++) { for (n_prb = n_prb_start; n_prb < n_prb_end; n_prb++) { for (mcs = mcs_start; mcs < mcs_end; mcs++, slot_count++) { for (uint32_t n = 0; n < SRSRAN_MAX_PRB_NR; n++) { pdsch_cfg.grant.prb_idx[n] = (n < n_prb); } pdsch_cfg.grant.nof_prb = n_prb; if (srsran_ra_nr_fill_tb(&pdsch_cfg, &pdsch_cfg.grant, mcs, &pdsch_cfg.grant.tb[0]) < SRSRAN_SUCCESS) { ERROR("Error filing tb"); goto clean_exit; } for (uint32_t tb = 0; tb < SRSRAN_MAX_TB; tb++) { // Skip TB if no allocated if (data_tx[tb] == NULL) { continue; } srsran_random_byte_vector(rand_gen, data_tx[tb], pdsch_cfg.grant.tb[tb].tbs / 8); pdsch_cfg.grant.tb[tb].softbuffer.tx = &softbuffer_tx; } // Compute PDCCH candidate locations uint32_t L = 1; uint32_t ncce_candidates[SRSRAN_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR] = {}; int nof_candidates = srsran_pdcch_nr_locations_coreset( coreset, search_space, pdsch_cfg.grant.rnti, L, SRSRAN_SLOT_NR_MOD(carrier.scs, slot.idx), ncce_candidates); if (nof_candidates < SRSRAN_SUCCESS) { ERROR("Error getting PDCCH candidates"); goto clean_exit; } // Setup DCI location srsran_dci_location_t dci_location = {}; dci_location.ncce = ncce_candidates[0]; dci_location.L = L; gettimeofday(&t[1], NULL); if (work_gnb_dl(&gnb_dl, &slot, search_space, &dci_location, data_tx) < SRSRAN_ERROR) { ERROR("Error running eNb DL"); goto clean_exit; } gettimeofday(&t[2], NULL); get_time_interval(t); pdsch_encode_us += (size_t)(t[0].tv_sec * 1e6 + t[0].tv_usec); // Emulate channel delay if (delay_n >= sf_len) { ERROR("Delay exceeds SF length"); goto clean_exit; } srsran_vec_cf_copy(&buffer_ue[0][0], &buffer_gnb[0][delay_n], sf_len - delay_n); srsran_vec_cf_copy(&buffer_ue[0][sf_len - delay_n], &buffer_gnb[0][0], delay_n); // Emulate channel CFO if (isnormal(cfo_hz) && ue_dl.fft[0].cfg.symbol_sz > 0) { srsran_vec_apply_cfo(buffer_ue[0], cfo_hz / (ue_dl.fft[0].cfg.symbol_sz * SRSRAN_SUBC_SPACING_NR(carrier.scs)), buffer_ue[0], sf_len); } for (uint32_t tb = 0; tb < SRSRAN_MAX_TB; tb++) { pdsch_cfg.grant.tb[tb].softbuffer.rx = &softbuffer_rx; srsran_softbuffer_rx_reset(pdsch_cfg.grant.tb[tb].softbuffer.rx); } gettimeofday(&t[1], NULL); if (work_ue_dl(&ue_dl, &slot, &pdsch_res) < SRSRAN_SUCCESS) { ERROR("Error running UE DL"); goto clean_exit; } gettimeofday(&t[2], NULL); get_time_interval(t); pdsch_decode_us += (size_t)(t[0].tv_sec * 1e6 + t[0].tv_usec); if (pdsch_res.evm[0] > 0.02f) { ERROR("Error PDSCH EVM is too high %f", pdsch_res.evm[0]); goto clean_exit; } // Check CRC only for RV=0 if (rv_idx == 0) { if (!pdsch_res.tb[0].crc) { ERROR("Failed to match CRC; n_prb=%d; mcs=%d; TBS=%d;", n_prb, mcs, pdsch_cfg.grant.tb[0].tbs); goto clean_exit; } if (memcmp(data_tx[0], data_rx[0], pdsch_cfg.grant.tb[0].tbs / 8) != 0) { ERROR("Failed to match Tx/Rx data; n_prb=%d; mcs=%d; TBS=%d;", n_prb, mcs, pdsch_cfg.grant.tb[0].tbs); printf("Tx data: "); srsran_vec_fprint_byte(stdout, data_tx[0], pdsch_cfg.grant.tb[0].tbs / 8); printf("Rx data: "); srsran_vec_fprint_byte(stdout, data_rx[0], pdsch_cfg.grant.tb[0].tbs / 8); goto clean_exit; } } if (srsran_verbose >= SRSRAN_VERBOSE_INFO) { char str[512]; srsran_pdsch_res_nr_t pdsch_res_vec[SRSRAN_MAX_CODEWORDS] = {}; pdsch_res_vec[0] = pdsch_res; srsran_ue_dl_nr_pdsch_info(&ue_dl, &pdsch_cfg, pdsch_res_vec, str, (uint32_t)sizeof(str)); char str_extra[2048]; srsran_sch_cfg_nr_info(&pdsch_cfg, str_extra, (uint32_t)sizeof(str_extra)); INFO("PDSCH: %s\n%s", str, str_extra); } INFO("n_prb=%d; mcs=%d; TBS=%d; EVM=%f; PASSED!", n_prb, mcs, pdsch_cfg.grant.tb[0].tbs, pdsch_res.evm[0]); // Count the Tx/Rx'd number of bits nof_bits += pdsch_cfg.grant.tb[0].tbs; } } } printf("[Rates in Mbps] Granted Processed\n"); printf(" eNb: %5.1f %5.1f\n", (double)nof_bits / (double)slot_count / 1000.0f, (double)nof_bits / pdsch_encode_us); printf(" UE: %5.1f %5.1f\n", (double)nof_bits / (double)slot_count / 1000.0f, (double)nof_bits / pdsch_decode_us); ret = SRSRAN_SUCCESS; clean_exit: srsran_random_free(rand_gen); srsran_gnb_dl_free(&gnb_dl); srsran_ue_dl_nr_free(&ue_dl); for (uint32_t i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { if (data_tx[i]) { free(data_tx[i]); } if (data_rx[i]) { free(data_rx[i]); } } if (buffer_gnb[0]) { free(buffer_gnb[0]); } if (buffer_ue[0]) { free(buffer_ue[0]); } srsran_softbuffer_tx_free(&softbuffer_tx); srsran_softbuffer_rx_free(&softbuffer_rx); return ret; }