/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * */ #ifndef COMMON_ENB_H #define COMMON_ENB_H /******************************************************************************* INCLUDES *******************************************************************************/ #include namespace srsenb { #define ENB_METRICS_MAX_USERS 64 #define SRSENB_RRC_MAX_N_PLMN_IDENTITIES 6 #define SRSENB_N_SRB 3 #define SRSENB_N_DRB 8 #define SRSENB_N_RADIO_BEARERS 11 // Cat 3 UE - Max number of DL-SCH transport block bits received within a TTI // 3GPP 36.306 Table 4.1.1 #define SRSENB_MAX_BUFFER_SIZE_BITS 102048 #define SRSENB_MAX_BUFFER_SIZE_BYTES 12756 #define SRSENB_BUFFER_HEADER_OFFSET 1024 /****************************************************************************** * Convert PLMN to BCD-coded MCC and MNC. * Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF. * MNC 001 represented as 0xF001 * MNC 01 represented as 0xFF01 * PLMN encoded as per TS 36.413 sec 9.2.3.8 *****************************************************************************/ inline void s1ap_plmn_to_mccmnc(uint32_t plmn, uint16_t *mcc, uint16_t *mnc) { uint8_t nibbles[6]; nibbles[0] = (plmn & 0xF00000) >> 20; nibbles[1] = (plmn & 0x0F0000) >> 16; nibbles[2] = (plmn & 0x00F000) >> 12; nibbles[3] = (plmn & 0x000F00) >> 8; nibbles[4] = (plmn & 0x0000F0) >> 4; nibbles[5] = (plmn & 0x00000F); *mcc = 0xF000; *mnc = 0xF000; *mcc |= nibbles[1] << 8; // MCC digit 1 *mcc |= nibbles[0] << 4; // MCC digit 2 *mcc |= nibbles[3]; // MCC digit 3 if(nibbles[2] == 0xF) { // 2-digit MNC *mnc |= 0x0F00; // MNC digit 1 *mnc |= nibbles[5] << 4; // MNC digit 2 *mnc |= nibbles[4]; // MNC digit 3 } else { // 3-digit MNC *mnc |= nibbles[5] << 8; // MNC digit 1 *mnc |= nibbles[4] << 4; // MNC digit 2 *mnc |= nibbles[2] ; // MNC digit 3 } } /****************************************************************************** * Convert BCD-coded MCC and MNC to PLMN. * Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF. * MNC 001 represented as 0xF001 * MNC 01 represented as 0xFF01 * PLMN encoded as per TS 36.413 sec 9.2.3.8 *****************************************************************************/ inline void s1ap_mccmnc_to_plmn(uint16_t mcc, uint16_t mnc, uint32_t *plmn) { uint8_t nibbles[6]; nibbles[1] = (mcc & 0x0F00) >> 8; // MCC digit 1 nibbles[0] = (mcc & 0x00F0) >> 4; // MCC digit 2 nibbles[3] = (mcc & 0x000F); // MCC digit 3 if((mnc & 0xFF00) == 0xFF00) { // 2-digit MNC nibbles[2] = 0x0F; // MNC digit 1 nibbles[5] = (mnc & 0x00F0) >> 4; // MNC digit 2 nibbles[4] = (mnc & 0x000F); // MNC digit 3 } else { // 3-digit MNC nibbles[5] = (mnc & 0x0F00) >> 8; // MNC digit 1 nibbles[4] = (mnc & 0x00F0) >> 4; // MNC digit 2 nibbles[2] = (mnc & 0x000F); // MNC digit 3 } *plmn = 0x000000; *plmn |= nibbles[0] << 20; *plmn |= nibbles[1] << 16; *plmn |= nibbles[2] << 12; *plmn |= nibbles[3] << 8; *plmn |= nibbles[4] << 4; *plmn |= nibbles[5]; } /****************************************************************************** * Safe conversions between byte buffers and integer types. * Note: these don't perform endian conversion - use e.g. htonl/ntohl if required *****************************************************************************/ inline void uint8_to_uint32(uint8_t *buf, uint32_t *i) { *i = (uint32_t)buf[0] << 24 | (uint32_t)buf[1] << 16 | (uint32_t)buf[2] << 8 | (uint32_t)buf[3]; } inline void uint32_to_uint8(uint32_t i, uint8_t *buf) { buf[0] = (i >> 24) & 0xFF; buf[1] = (i >> 16) & 0xFF; buf[2] = (i >> 8) & 0xFF; buf[3] = i & 0xFF; } inline void uint8_to_uint16(uint8_t *buf, uint16_t *i) { *i = (uint32_t)buf[0] << 8 | (uint32_t)buf[1]; } inline void uint16_to_uint8(uint16_t i, uint8_t *buf) { buf[0] = (i >> 8) & 0xFF; buf[1] = i & 0xFF; } } // namespace srsenb #endif // COMMON_ENB_H