/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "srslte/phch/dci.h" #include "srslte/common/phy_common.h" #include "srslte/utils/bit.h" #include "srslte/utils/vector.h" #include "srslte/utils/debug.h" /* Creates the DL PDSCH resource allocation grant from a DCI message */ int dci_msg_to_ra_dl(dci_msg_t *msg, uint16_t msg_rnti, srslte_cell_t cell, uint32_t cfi, ra_pdsch_t *ra_dl) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (msg != NULL && ra_dl != NULL && srslte_cell_isvalid(&cell) && cfi > 0 && cfi < 4) { ret = SRSLTE_ERROR; dci_msg_type_t type; if (dci_msg_get_type(msg, &type, cell.nof_prb, msg_rnti)) { fprintf(stderr, "Can't get DCI message type\n"); return ret; } if (VERBOSE_ISINFO()) { INFO("",0); dci_msg_type_fprint(stdout, type); } if (type.type == PDSCH_SCHED) { bzero(ra_dl, sizeof(ra_pdsch_t)); bool srslte_crc_is_crnti = false; if (msg_rnti >= SRSLTE_CRNTI_START && msg_rnti <= SRSLTE_CRNTI_END) { srslte_crc_is_crnti = true; } if (dci_msg_unpack_pdsch(msg, ra_dl, cell.nof_prb, srslte_crc_is_crnti)) { fprintf(stderr, "Can't unpack PDSCH message\n"); return ret; } if (VERBOSE_ISINFO()) { ra_pdsch_fprint(stdout, ra_dl, cell.nof_prb); } if (ra_dl_alloc(&ra_dl->prb_alloc, ra_dl, cell.nof_prb)) { fprintf(stderr, "Error computing resource allocation\n"); return ret; } ra_dl_alloc_re(&ra_dl->prb_alloc, cell.nof_prb, cell.nof_ports, cell.nof_prb<10?(cfi+1):cfi, cell.cp); ret = SRSLTE_SUCCESS; } else { fprintf(stderr, "Unsupported message type: "); dci_msg_type_fprint(stderr, type); } } return ret; } /* Creates the UL PUSCH resource allocation grant from the random access respone message */ int dci_rar_to_ra_ul(uint32_t rba, uint32_t trunc_mcs, bool hopping_flag, uint32_t nof_prb, ra_pusch_t *ra) { bzero(ra, sizeof(ra_pusch_t)); if (!hopping_flag) { ra->freq_hop_fl = hop_disabled; } else { fprintf(stderr, "FIXME: Frequency hopping in RAR not implemented\n"); ra->freq_hop_fl = 1; } uint32_t riv = rba; // Truncate resource block assignment uint32_t b = 0; if (nof_prb <= 44) { b = (uint32_t) (ceilf(log2((float) nof_prb*(nof_prb+1)/2))); riv = riv & ((1<<(b+1))-1); } ra->type2_alloc.riv = riv; ra->mcs_idx = trunc_mcs; ra_type2_from_riv(riv, &ra->type2_alloc.L_crb, &ra->type2_alloc.RB_start, nof_prb, nof_prb); ra_mcs_from_idx_ul(ra->mcs_idx, ra_nprb_ul(ra, nof_prb), &ra->mcs); return SRSLTE_SUCCESS; } /* Creates the UL PUSCH resource allocation grant from a DCI format 0 message */ int dci_msg_to_ra_ul(dci_msg_t *msg, uint32_t nof_prb, uint32_t n_rb_ho, ra_pusch_t *ra_ul) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (msg != NULL && ra_ul != NULL) { ret = SRSLTE_ERROR; bzero(ra_ul, sizeof(ra_pusch_t)); if (dci_msg_unpack_pusch(msg, ra_ul, nof_prb)) { fprintf(stderr, "Can't unpack PDSCH message\n"); return ret; } if (VERBOSE_ISINFO()) { ra_pusch_fprint(stdout, ra_ul, nof_prb); } if (ra_ul_alloc(&ra_ul->prb_alloc, ra_ul, n_rb_ho, nof_prb)) { fprintf(stderr, "Error computing resource allocation\n"); return ret; } ret = SRSLTE_SUCCESS; } return ret; } int dci_location_set(dci_location_t *c, uint32_t L, uint32_t nCCE) { if (L <= 3) { c->L = L; } else { fprintf(stderr, "Invalid L %d\n", L); return SRSLTE_ERROR; } if (nCCE <= 87) { c->ncce = nCCE; } else { fprintf(stderr, "Invalid nCCE %d\n", nCCE); return SRSLTE_ERROR; } return SRSLTE_SUCCESS; } bool dci_location_isvalid(dci_location_t *c) { if (c->L <= 3 && c->ncce <= 87) { return true; } else { return false; } } uint32_t riv_nbits(uint32_t nof_prb) { return (uint32_t) ceilf(log2f((float) nof_prb * ((float) nof_prb + 1) / 2)); } const uint32_t ambiguous_sizes[10] = { 12, 14, 16, 20, 24, 26, 32, 40, 44, 56 }; bool is_ambiguous_size(uint32_t size) { int i; for (i = 0; i < 10; i++) { if (size == ambiguous_sizes[i]) { return true; } } return false; } /********************************** * PAYLOAD sizeof functions * ********************************/ uint32_t dci_format0_sizeof_(uint32_t nof_prb) { return 1 + 1 + riv_nbits(nof_prb) + 5 + 1 + 2 + 3 + 1; } uint32_t dci_format1A_sizeof(uint32_t nof_prb) { uint32_t n; n = 1 + 1 + riv_nbits(nof_prb) + 5 + 3 + 1 + 2 + 2; while (n < dci_format0_sizeof_(nof_prb)) { n++; } if (is_ambiguous_size(n)) { n++; } return n; } uint32_t dci_format0_sizeof(uint32_t nof_prb) { uint32_t n = dci_format0_sizeof_(nof_prb); while (n < dci_format1A_sizeof(nof_prb)) { n++; } return n; } uint32_t dci_format1_sizeof(uint32_t nof_prb) { uint32_t n = (uint32_t) ceilf((float) nof_prb / ra_type0_P(nof_prb)) + 5 + 3 + 1 + 2 + 2; if (nof_prb > 10) { n++; } while (n == dci_format0_sizeof(nof_prb) || n == dci_format1A_sizeof(nof_prb) || is_ambiguous_size(n)) { n++; } return n; } uint32_t dci_format1C_sizeof(uint32_t nof_prb) { uint32_t n_vrb_dl_gap1 = ra_type2_n_vrb_dl(nof_prb, true); uint32_t n_step = ra_type2_n_rb_step(nof_prb); uint32_t n = riv_nbits((uint32_t) n_vrb_dl_gap1 / n_step) + 5; if (nof_prb >= 50) { n++; } return n; } uint32_t dci_format_sizeof(dci_format_t format, uint32_t nof_prb) { switch (format) { case Format0: return dci_format0_sizeof(nof_prb); case Format1: return dci_format1_sizeof(nof_prb); case Format1A: return dci_format1A_sizeof(nof_prb); case Format1C: return dci_format1C_sizeof(nof_prb); default: return SRSLTE_ERROR; } } /********************************** * DCI Resource Allocation functions * ********************************/ /* Packs DCI format 0 data to a sequence of bits and store them in msg according * to 36.212 5.3.3.1.1 * * TODO: TPC and cyclic shift for DM RS not implemented */ int dci_format0_pack(ra_pusch_t *data, dci_msg_t *msg, uint32_t nof_prb) { /* pack bits */ uint8_t *y = msg->data; uint32_t n_ul_hop; *y++ = 0; // format differentiation if (data->freq_hop_fl == hop_disabled) { // frequency hopping *y++ = 0; n_ul_hop = 0; } else { *y++ = 1; if (nof_prb < 50) { n_ul_hop = 1; // Table 8.4-1 of 36.213 *y++ = data->freq_hop_fl & 1; } else { n_ul_hop = 2; // Table 8.4-1 of 36.213 *y++ = (data->freq_hop_fl & 2) >> 1; *y++ = data->freq_hop_fl & 1; } } /* pack RIV according to 8.1 of 36.213 */ uint32_t riv; if (data->type2_alloc.L_crb) { riv = ra_type2_to_riv(data->type2_alloc.L_crb, data->type2_alloc.RB_start, nof_prb); } else { riv = data->type2_alloc.riv; } bit_pack(riv, &y, riv_nbits(nof_prb) - n_ul_hop); /* pack MCS according to 8.6.1 of 36.213 */ bit_pack(data->mcs_idx, &y, 5); *y++ = data->ndi; // TCP commands not implemented *y++ = 0; *y++ = 0; // DM RS not implemented *y++ = 0; *y++ = 0; *y++ = 0; // CQI request *y++ = data->cqi_request; // Padding with zeros uint32_t n = dci_format0_sizeof(nof_prb); while (y - msg->data < n) { *y++ = 0; } msg->nof_bits = (y - msg->data); return SRSLTE_SUCCESS; } /* Unpacks DCI format 0 data and store result in msg according * to 36.212 5.3.3.1.1 * * TODO: TPC and cyclic shift for DM RS not implemented */ int dci_format0_unpack(dci_msg_t *msg, ra_pusch_t *data, uint32_t nof_prb) { /* pack bits */ uint8_t *y = msg->data; uint32_t n_ul_hop; /* Make sure it's a Format0 message */ if (msg->nof_bits != dci_format_sizeof(Format0, nof_prb)) { fprintf(stderr, "Invalid message length for format 0\n"); return SRSLTE_ERROR; } if (*y++ != 0) { fprintf(stderr, "Invalid format differentiation field value. This is Format1A\n"); return SRSLTE_ERROR; } if (*y++ == 0) { data->freq_hop_fl = hop_disabled; n_ul_hop = 0; } else { if (nof_prb < 50) { n_ul_hop = 1; // Table 8.4-1 of 36.213 data->freq_hop_fl = *y++; } else { n_ul_hop = 2; // Table 8.4-1 of 36.213 data->freq_hop_fl = y[0] << 1 | y[1]; y += 2; } } /* unpack RIV according to 8.1 of 36.213 */ uint32_t riv = bit_unpack(&y, riv_nbits(nof_prb) - n_ul_hop); ra_type2_from_riv(riv, &data->type2_alloc.L_crb, &data->type2_alloc.RB_start, nof_prb, nof_prb); data->type2_alloc.riv = riv; /* unpack MCS according to 8.6 of 36.213 */ data->mcs_idx = bit_unpack(&y, 5); data->ndi = *y++ ? true : false; // TCP and DM RS commands not implemented y += 5; // CQI request data->cqi_request = *y++ ? true : false; // 8.6.2 First paragraph if (data->mcs_idx <= 28) { ra_mcs_from_idx_ul(data->mcs_idx, ra_nprb_ul(data, nof_prb), &data->mcs); } else if (data->mcs_idx == 29 && data->cqi_request && ra_nprb_ul(data, nof_prb) <= 4) { // 8.6.1 and 8.6.2 36.213 second paragraph data->mcs.mod = LTE_QPSK; data->mcs.tbs = 0; } else if (data->mcs_idx >= 29) { // Else leave TBS and use the previously used PUSCH modulation data->mcs.tbs = 0; data->rv_idx = data->mcs_idx - 28; } return SRSLTE_SUCCESS; } /* Packs DCI format 1 data to a sequence of bits and store them in msg according * to 36.212 5.3.3.1.2 * * TODO: TPC commands */ int dci_format1_pack(ra_pdsch_t *data, dci_msg_t *msg, uint32_t nof_prb) { /* pack bits */ uint8_t *y = msg->data; if (nof_prb > 10) { *y++ = data->alloc_type; } /* Resource allocation: type0 or type 1 */ uint32_t P = ra_type0_P(nof_prb); uint32_t alloc_size = (uint32_t) ceilf((float) nof_prb / P); switch (data->alloc_type) { case alloc_type0: bit_pack((uint32_t) data->type0_alloc.rbg_bitmask, &y, alloc_size); break; case alloc_type1: bit_pack((uint32_t) data->type1_alloc.rbg_subset, &y, (int) ceilf(log2f(P))); *y++ = data->type1_alloc.shift ? 1 : 0; bit_pack((uint32_t) data->type1_alloc.vrb_bitmask, &y, alloc_size - (int) ceilf(log2f(P)) - 1); break; default: fprintf(stderr, "Format 1 accepts type0 or type1 resource allocation only\n"); return SRSLTE_ERROR; } /* pack MCS */ bit_pack(data->mcs_idx, &y, 5); /* harq process number */ bit_pack(data->harq_process, &y, 3); *y++ = data->ndi; // rv version bit_pack(data->rv_idx, &y, 2); // TPC not implemented *y++ = 0; *y++ = 0; // Padding with zeros uint32_t n = dci_format1_sizeof(nof_prb); while (y - msg->data < n) { *y++ = 0; } msg->nof_bits = (y - msg->data); return SRSLTE_SUCCESS; } int dci_format1_unpack(dci_msg_t *msg, ra_pdsch_t *data, uint32_t nof_prb) { /* pack bits */ uint8_t *y = msg->data; /* Make sure it's a Format1 message */ if (msg->nof_bits != dci_format_sizeof(Format1, nof_prb)) { fprintf(stderr, "Invalid message length for format 1\n"); return SRSLTE_ERROR; } if (nof_prb > 10) { data->alloc_type = *y++; } else { data->alloc_type = alloc_type0; } /* Resource allocation: type0 or type 1 */ uint32_t P = ra_type0_P(nof_prb); uint32_t alloc_size = (uint32_t) ceilf((float) nof_prb / P); switch (data->alloc_type) { case alloc_type0: data->type0_alloc.rbg_bitmask = bit_unpack(&y, alloc_size); break; case alloc_type1: data->type1_alloc.rbg_subset = bit_unpack(&y, (int) ceilf(log2f(P))); data->type1_alloc.shift = *y++ ? true : false; data->type1_alloc.vrb_bitmask = bit_unpack(&y, alloc_size - (int) ceilf(log2f(P)) - 1); break; default: fprintf(stderr, "Format 1 accepts type0 or type1 resource allocation only\n"); return SRSLTE_ERROR; } /* unpack MCS according to 7.1.7 of 36.213 */ data->mcs_idx = bit_unpack(&y, 5); if (ra_mcs_from_idx_dl(data->mcs_idx, ra_nprb_dl(data, nof_prb), &data->mcs)) { fprintf(stderr, "Error getting MCS\n"); return SRSLTE_ERROR; } /* harq process number */ data->harq_process = bit_unpack(&y, 3); data->ndi = *y++ ? true : false; // rv version data->rv_idx = bit_unpack(&y, 2); // TPC not implemented return SRSLTE_SUCCESS; } /* Packs DCI format 1A for compact scheduling of PDSCH words according to 36.212 5.3.3.1.3 * * TODO: RA procedure initiated by PDCCH, TPC commands */ int dci_format1As_pack(ra_pdsch_t *data, dci_msg_t *msg, uint32_t nof_prb, bool srslte_crc_is_crnti) { /* pack bits */ uint8_t *y = msg->data; *y++ = 1; // format differentiation if (data->alloc_type != alloc_type2) { fprintf(stderr, "Format 1A accepts type2 resource allocation only\n"); return SRSLTE_ERROR; } *y++ = data->type2_alloc.mode; // localized or distributed VRB assignment if (data->type2_alloc.mode == t2_loc) { if (data->type2_alloc.L_crb > nof_prb) { fprintf(stderr, "L_CRB=%d can not exceed system BW for localized type2\n", data->type2_alloc.L_crb); return SRSLTE_ERROR; } } else { uint32_t n_vrb_dl; if (srslte_crc_is_crnti && nof_prb > 50) { n_vrb_dl = 16; } else { n_vrb_dl = ra_type2_n_vrb_dl(nof_prb, data->type2_alloc.n_gap == t2_ng1); } if (data->type2_alloc.L_crb > n_vrb_dl) { fprintf(stderr, "L_CRB=%d can not exceed N_vrb_dl=%d for distributed type2\n", data->type2_alloc.L_crb, n_vrb_dl); return SRSLTE_ERROR; } } /* pack RIV according to 7.1.6.3 of 36.213 */ uint32_t riv; if (data->type2_alloc.L_crb) { riv = ra_type2_to_riv(data->type2_alloc.L_crb, data->type2_alloc.RB_start, nof_prb); } else { riv = data->type2_alloc.riv; } uint32_t nb_gap = 0; if (srslte_crc_is_crnti && data->type2_alloc.mode == t2_dist && nof_prb >= 50) { nb_gap = 1; *y++ = data->type2_alloc.n_gap; } bit_pack(riv, &y, riv_nbits(nof_prb) - nb_gap); // in format1A, MCS = TBS according to 7.1.7.2 of 36.213 bit_pack(data->mcs_idx, &y, 5); bit_pack(data->harq_process, &y, 3); if (!srslte_crc_is_crnti && nof_prb >= 50 && data->type2_alloc.mode == t2_dist) { *y++ = data->type2_alloc.n_gap; } else { y++; // bit reserved } // rv version bit_pack(data->rv_idx, &y, 2); if (srslte_crc_is_crnti) { // TPC not implemented *y++ = 0; *y++ = 0; } else { y++; // MSB of TPC is reserved *y++ = data->type2_alloc.n_prb1a; // LSB indicates N_prb_1a for TBS } // Padding with zeros uint32_t n = dci_format1A_sizeof(nof_prb); while (y - msg->data < n) { *y++ = 0; } msg->nof_bits = (y - msg->data); return SRSLTE_SUCCESS; } /* Unpacks DCI format 1A for compact scheduling of PDSCH words according to 36.212 5.3.3.1.3 * */ int dci_format1As_unpack(dci_msg_t *msg, ra_pdsch_t *data, uint32_t nof_prb, bool srslte_crc_is_crnti) { /* pack bits */ uint8_t *y = msg->data; /* Make sure it's a Format0 message */ if (msg->nof_bits != dci_format_sizeof(Format1A, nof_prb)) { fprintf(stderr, "Invalid message length for format 1A\n"); return SRSLTE_ERROR; } if (*y++ != 1) { fprintf(stderr, "Invalid format differentiation field value. This is Format0\n"); return SRSLTE_ERROR; } data->alloc_type = alloc_type2; data->type2_alloc.mode = *y++; // by default, set N_gap to 1 data->type2_alloc.n_gap = t2_ng1; /* unpack RIV according to 7.1.6.3 of 36.213 */ uint32_t nb_gap = 0; if (srslte_crc_is_crnti && data->type2_alloc.mode == t2_dist && nof_prb >= 50) { nb_gap = 1; data->type2_alloc.n_gap = *y++; } uint32_t nof_vrb; if (data->type2_alloc.mode == t2_loc) { nof_vrb = nof_prb; } else { nof_vrb = ra_type2_n_vrb_dl(nof_prb, data->type2_alloc.n_gap == t2_ng1); } uint32_t riv = bit_unpack(&y, riv_nbits(nof_prb) - nb_gap); ra_type2_from_riv(riv, &data->type2_alloc.L_crb, &data->type2_alloc.RB_start, nof_prb, nof_vrb); data->type2_alloc.riv = riv; // unpack MCS data->mcs_idx = bit_unpack(&y, 5); data->harq_process = bit_unpack(&y, 3); if (!srslte_crc_is_crnti && nof_prb >= 50 && data->type2_alloc.mode == t2_dist) { data->type2_alloc.n_gap = *y++; } else { y++; // bit reserved } // rv version bit_pack(data->rv_idx, &y, 2); if (srslte_crc_is_crnti) { // TPC not implemented y++; y++; } else { y++; // MSB of TPC is reserved data->type2_alloc.n_prb1a = *y++; // LSB indicates N_prb_1a for TBS } uint32_t n_prb; if (srslte_crc_is_crnti) { n_prb = ra_nprb_dl(data, nof_prb); } else { n_prb = data->type2_alloc.n_prb1a == nprb1a_2 ? 2 : 3; } data->mcs.tbs = ra_tbs_from_idx(data->mcs_idx, n_prb); data->mcs.mod = LTE_QPSK; return SRSLTE_SUCCESS; } /* Format 1C for compact scheduling of PDSCH words * */ int dci_format1Cs_pack(ra_pdsch_t *data, dci_msg_t *msg, uint32_t nof_prb) { /* pack bits */ uint8_t *y = msg->data; if (data->alloc_type != alloc_type2 || data->type2_alloc.mode != t2_dist) { fprintf(stderr, "Format 1C accepts distributed type2 resource allocation only\n"); return SRSLTE_ERROR; } if (nof_prb >= 50) { *y++ = data->type2_alloc.n_gap; } uint32_t n_step = ra_type2_n_rb_step(nof_prb); uint32_t n_vrb_dl = ra_type2_n_vrb_dl(nof_prb, data->type2_alloc.n_gap == t2_ng1); if (data->type2_alloc.L_crb > ((uint32_t) n_vrb_dl / n_step) * n_step) { fprintf(stderr, "L_CRB=%d can not exceed N_vrb_dl=%d for distributed type2\n", data->type2_alloc.L_crb, ((uint32_t) n_vrb_dl / n_step) * n_step); return SRSLTE_ERROR; } if (data->type2_alloc.L_crb % n_step) { fprintf(stderr, "L_crb must be multiple of n_step\n"); return SRSLTE_ERROR; } if (data->type2_alloc.RB_start % n_step) { fprintf(stderr, "RB_start must be multiple of n_step\n"); return SRSLTE_ERROR; } uint32_t L_p = data->type2_alloc.L_crb / n_step; uint32_t RB_p = data->type2_alloc.RB_start / n_step; uint32_t n_vrb_p = (int) n_vrb_dl / n_step; uint32_t riv; if (data->type2_alloc.L_crb) { riv = ra_type2_to_riv(L_p, RB_p, n_vrb_p); } else { riv = data->type2_alloc.riv; } bit_pack(riv, &y, riv_nbits((int) n_vrb_dl / n_step)); // in format1C, MCS = TBS according to 7.1.7.2 of 36.213 bit_pack(data->mcs_idx, &y, 5); msg->nof_bits = (y - msg->data); return SRSLTE_SUCCESS; } int dci_format1Cs_unpack(dci_msg_t *msg, ra_pdsch_t *data, uint32_t nof_prb) { uint32_t L_p, RB_p; /* pack bits */ uint8_t *y = msg->data; if (msg->nof_bits != dci_format_sizeof(Format1C, nof_prb)) { fprintf(stderr, "Invalid message length for format 1C\n"); return SRSLTE_ERROR; } data->alloc_type = alloc_type2; data->type2_alloc.mode = t2_dist; if (nof_prb >= 50) { data->type2_alloc.n_gap = *y++; } uint32_t n_step = ra_type2_n_rb_step(nof_prb); uint32_t n_vrb_dl = ra_type2_n_vrb_dl(nof_prb, data->type2_alloc.n_gap == t2_ng1); uint32_t riv = bit_unpack(&y, riv_nbits((int) n_vrb_dl / n_step)); uint32_t n_vrb_p = (uint32_t) n_vrb_dl / n_step; ra_type2_from_riv(riv, &L_p, &RB_p, n_vrb_p, n_vrb_p); data->type2_alloc.L_crb = L_p * n_step; data->type2_alloc.RB_start = RB_p * n_step; data->type2_alloc.riv = riv; data->mcs_idx = bit_unpack(&y, 5); data->mcs.tbs = ra_tbs_from_idx_format1c(data->mcs_idx); data->mcs.mod = LTE_QPSK; msg->nof_bits = (y - msg->data); return SRSLTE_SUCCESS; } int dci_msg_pack_pdsch(ra_pdsch_t *data, dci_msg_t *msg, dci_format_t format, uint32_t nof_prb, bool srslte_crc_is_crnti) { switch (format) { case Format1: return dci_format1_pack(data, msg, nof_prb); case Format1A: return dci_format1As_pack(data, msg, nof_prb, srslte_crc_is_crnti); case Format1C: return dci_format1Cs_pack(data, msg, nof_prb); default: fprintf(stderr, "Invalid DCI format %s for PDSCH resource allocation\n", dci_format_string(format)); return SRSLTE_ERROR; } } int dci_msg_unpack_pdsch(dci_msg_t *msg, ra_pdsch_t *data, uint32_t nof_prb, bool srslte_crc_is_crnti) { if (msg->nof_bits == dci_format_sizeof(Format1, nof_prb)) { return dci_format1_unpack(msg, data, nof_prb); } else if (msg->nof_bits == dci_format_sizeof(Format1A, nof_prb)) { return dci_format1As_unpack(msg, data, nof_prb, srslte_crc_is_crnti); } else if (msg->nof_bits == dci_format_sizeof(Format1C, nof_prb)) { return dci_format1Cs_unpack(msg, data, nof_prb); } else { return SRSLTE_ERROR; } } int dci_msg_pack_pusch(ra_pusch_t *data, dci_msg_t *msg, uint32_t nof_prb) { return dci_format0_pack(data, msg, nof_prb); } int dci_msg_unpack_pusch(dci_msg_t *msg, ra_pusch_t *data, uint32_t nof_prb) { return dci_format0_unpack(msg, data, nof_prb); } dci_format_t dci_format_from_string(char *str) { if (!strcmp(str, "Format0")) { return Format0; } else if (!strcmp(str, "Format1")) { return Format1; } else if (!strcmp(str, "Format1A")) { return Format1A; } else if (!strcmp(str, "Format1C")) { return Format1C; } else { return FormatError; } } char* dci_format_string(dci_format_t format) { switch (format) { case Format0: return "Format0"; case Format1: return "Format1"; case Format1A: return "Format1A"; case Format1C: return "Format1C"; default: return "N/A"; // fatal error } } void dci_msg_type_fprint(FILE *f, dci_msg_type_t type) { switch (type.type) { case PUSCH_SCHED: fprintf(f, "%s PUSCH Scheduling\n", dci_format_string(type.format)); break; case PDSCH_SCHED: fprintf(f, "%s PDSCH Scheduling\n", dci_format_string(type.format)); break; case RA_PROC_PDCCH: fprintf(f, "%s Random access initiated by PDCCH\n", dci_format_string(type.format)); break; case MCCH_CHANGE: fprintf(f, "%s MCCH change notification\n", dci_format_string(type.format)); break; case TPC_COMMAND: fprintf(f, "%s TPC command\n", dci_format_string(type.format)); break; } } int dci_msg_get_type(dci_msg_t *msg, dci_msg_type_t *type, uint32_t nof_prb, uint16_t msg_rnti) { DEBUG("Get message type: nof_bits=%d, msg_rnti=0x%x\n", msg->nof_bits, msg_rnti); if (msg->nof_bits == dci_format_sizeof(Format0, nof_prb) && !msg->data[0]) { type->type = PUSCH_SCHED; type->format = Format0; return SRSLTE_SUCCESS; } else if (msg->nof_bits == dci_format_sizeof(Format1, nof_prb)) { type->type = PDSCH_SCHED; // only these 2 types supported type->format = Format1; return SRSLTE_SUCCESS; } else if (msg->nof_bits == dci_format_sizeof(Format1A, nof_prb)) { /* The RNTI is not the only condition. Also some fields in the packet. * if (msg_rnti >= SRSLTE_CRNTI_START && msg_rnti <= SRSLTE_CRNTI_END) { type->type = RA_PROC_PDCCH; type->format = Format1A; } else { */ type->type = PDSCH_SCHED; // only these 2 types supported type->format = Format1A; //} return SRSLTE_SUCCESS; } else if (msg->nof_bits == dci_format_sizeof(Format1C, nof_prb)) { if (msg_rnti == SRSLTE_MRNTI) { type->type = MCCH_CHANGE; type->format = Format1C; } else { type->type = PDSCH_SCHED; // only these 2 types supported type->format = Format1C; } return SRSLTE_SUCCESS; } return SRSLTE_ERROR; }