/** * * \section COPYRIGHT * * Copyright 2013-2020 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include "srsenb/hdr/stack/mac/sched.h" #include "srsenb/hdr/stack/mac/sched_carrier.h" #include "srsenb/hdr/stack/mac/sched_ue.h" #include #include #include #include #include #include #include "srsenb/hdr/phy/phy.h" #include "srsenb/hdr/stack/mac/mac.h" #include "srslte/common/log_filter.h" #include "srslte/interfaces/enb_interfaces.h" #include "srslte/interfaces/sched_interface.h" #include "srslte/phy/utils/debug.h" #include "sched_common_test_suite.h" #include "sched_sim_ue.h" #include "sched_test_common.h" #include "sched_test_utils.h" #include "srslte/common/test_common.h" using srslte::tti_point; /******************************************************** * Random Tester for Scheduler. * Current Checks: * - Check correct timing of PRACH, RAR, and Msg3 * - Check whether Msg4 contains ConRes * - Check allocs of users that no longer exist * - Check collisions in PDCCH, PUSCH, and PDSCH * - Unexpected Msg3, RAR allocs or with wrong values * - Users without data to Tx cannot be allocated in UL * - Retxs always take precedence * - Invalid BC SIB index or TBS * - Harqs: * - invalid pids scheduled * - empty harqs scheduled * - invalid harq TTI * - consistent NCCE loc * - invalid retx number * - DL adaptive retx/new tx <=> PDCCH alloc *******************************************************/ uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count(); struct ue_stats_t { uint64_t nof_dl_rbs = 0; uint64_t nof_ul_rbs = 0; }; std::map ue_stats; /******************* * Logging * *******************/ class sched_test_log final : public srslte::test_log_filter { public: sched_test_log() : srslte::test_log_filter("TEST") { exit_on_error = true; } ~sched_test_log() override { log_diagnostics(); } void log_diagnostics() override { info("UE stats:\n"); for (auto& e : ue_stats) { info("0x%x: {DL RBs: %" PRIu64 ", UL RBs: %" PRIu64 "}\n", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs); } info("Number of assertion warnings: %u\n", warn_counter); info("Number of assertion errors: %u\n", error_counter); info("This was the seed: %u\n", seed); } }; srslte::scoped_log log_global{}; /******************* * Dummies * *******************/ constexpr uint32_t CARRIER_IDX = 0; // Designed for testing purposes struct sched_tester : public srsenb::common_sched_tester { struct tester_user_results { uint32_t dl_pending_data = 0; uint32_t ul_pending_data = 0; ///< data pending for UL bool has_dl_tx = false; bool has_ul_tx = false; ///< has either tx or retx bool has_ul_retx = false; bool has_ul_newtx = false; ///< *no* retx, but has tx bool ul_retx_got_delayed = false; srsenb::dl_harq_proc dl_harqs[srsenb::cc_sched_ue::SCHED_MAX_HARQ_PROC]; srsenb::ul_harq_proc ul_harq; }; struct sched_tti_data { std::map ue_data; ///< stores buffer state of each user tester_user_results total_ues; ///< stores combined UL/DL buffer state }; // sched results sched_tti_data tti_data; void rem_user(uint16_t rnti) override; int assert_no_empty_allocs(); int test_harqs(); private: void new_test_tti() override; void before_sched() override; int process_results() override; int update_ue_stats(); }; void sched_tester::rem_user(uint16_t rnti) { common_sched_tester::rem_user(rnti); tti_data.ue_data.erase(rnti); } void sched_tester::new_test_tti() { common_sched_tester::new_test_tti(); // NOTE: make a local copy, since some of these variables may be cleared during scheduling tti_data.ue_data.clear(); tti_data.total_ues = tester_user_results(); } void sched_tester::before_sched() { // check pending data buffers for (auto& it : ue_db) { uint16_t rnti = it.first; srsenb::sched_ue* user = &it.second; tester_user_results d; srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); d.ul_pending_data = get_ul_buffer(rnti); // user->get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) or hul->has_pending_retx(); // // get_ul_buffer(rnti); d.dl_pending_data = get_dl_buffer(rnti); d.has_ul_retx = hul->has_pending_retx(); d.has_ul_tx = d.has_ul_retx or d.ul_pending_data > 0; srsenb::dl_harq_proc* hdl = user->get_pending_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX); d.has_dl_tx = (hdl != nullptr) or (it.second.get_empty_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX) != nullptr and d.dl_pending_data > 0); d.has_ul_newtx = not d.has_ul_retx and d.ul_pending_data > 0; tti_data.ue_data.insert(std::make_pair(rnti, d)); tti_data.total_ues.dl_pending_data += d.dl_pending_data; tti_data.total_ues.ul_pending_data += d.ul_pending_data; tti_data.total_ues.has_ul_tx |= d.has_ul_tx; tti_data.total_ues.has_dl_tx |= d.has_dl_tx; tti_data.total_ues.has_ul_newtx |= d.has_ul_newtx; for (uint32_t i = 0; i < srsenb::cc_sched_ue::SCHED_MAX_HARQ_PROC; ++i) { const srsenb::dl_harq_proc& h = user->get_dl_harq(i, CARRIER_IDX); tti_data.ue_data[rnti].dl_harqs[i] = h; } // NOTE: ACK might have just cleared the harq for tti_info.tti_params.tti_tx_ul tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); } // TODO: Check whether pending pending_rar.rar_tti correspond to a prach_tti } int sched_tester::process_results() { const srsenb::cc_sched_result* cc_result = sched_results.get_cc(srslte::tti_point{tti_info.tti_params.tti_rx}, CARRIER_IDX); srsenb::sf_output_res_t sf_out{ sched_cell_params, tti_point{tti_info.tti_params.tti_rx}, tti_info.ul_sched_result, tti_info.dl_sched_result}; TESTASSERT(tti_info.tti_params.tti_rx == cc_result->tti_params.tti_rx); // Common tests TESTASSERT(test_pdcch_collisions(sf_out, CARRIER_IDX, &cc_result->pdcch_mask) == SRSLTE_SUCCESS); TESTASSERT(test_dci_content_common(sf_out, CARRIER_IDX) == SRSLTE_SUCCESS); TESTASSERT(test_sib_scheduling(sf_out, CARRIER_IDX) == SRSLTE_SUCCESS); TESTASSERT(test_pusch_collisions(sf_out, CARRIER_IDX, &cc_result->ul_mask) == SRSLTE_SUCCESS); TESTASSERT(test_pdsch_collisions(sf_out, CARRIER_IDX, &cc_result->dl_mask) == SRSLTE_SUCCESS); // UE dedicated tests TESTASSERT(ue_tester->test_all(sf_out) == SRSLTE_SUCCESS); assert_no_empty_allocs(); test_harqs(); update_ue_stats(); return SRSLTE_SUCCESS; } int sched_tester::assert_no_empty_allocs() { // Test if allocations only take place for users with pending data or in RAR for (auto& iter : tti_data.ue_data) { uint16_t rnti = iter.first; // srsenb::sched_ue* user = &ue_db[rnti]; if (not iter.second.has_ul_tx) { for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) { auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i]; if (pusch.dci.rnti == rnti and pusch.needs_pdcch) { // TODO: This test does not work for adaptive re-tx TESTERROR("There was a user without data that got allocated in UL\n"); } } } // srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul); iter.second.ul_retx_got_delayed = iter.second.has_ul_retx and iter.second.ul_harq.is_empty(0); tti_data.total_ues.ul_retx_got_delayed |= iter.second.ul_retx_got_delayed; // Retxs cannot give space to newtx allocations CONDERROR(tti_data.total_ues.ul_retx_got_delayed, "There was a retx that was erased for user rnti=0x%x\n", rnti); } return SRSLTE_SUCCESS; } int sched_tester::test_harqs() { /* check consistency of DL harq procedures and allocations */ for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) { const auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i]; uint32_t h_id = data.dci.pid; uint16_t rnti = data.dci.rnti; const srsenb::dl_harq_proc& h = ue_db[rnti].get_dl_harq(h_id, CARRIER_IDX); CONDERROR(h.get_tti() != tti_point{tti_info.tti_params.tti_tx_dl}, "The scheduled DL harq pid=%d does not a valid tti=%u\n", h_id, tti_info.tti_params.tti_tx_dl); CONDERROR(h.get_n_cce() != data.dci.location.ncce, "Harq DCI location does not match with result\n"); } /* Check PHICH allocations */ for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems; ++i) { const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i]; const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq; const auto* h = ue_db[phich.rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); CONDERROR(not hprev.has_pending_phich(), "Alloc PHICH did not have any pending ack\n"); bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx(); if (phich.phich == sched_interface::ul_sched_phich_t::ACK) { // The harq can be either ACKed or Resumed if (not hprev.is_empty()) { // In case it was resumed CONDERROR(h == nullptr or h->is_empty(), "Cannot resume empty UL harq\n"); for (uint32_t j = 0; j < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++j) { auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[j]; CONDERROR(pusch.dci.rnti == phich.rnti, "Cannot send PHICH::ACK for same harq that got UL grant.\n"); } } } else { CONDERROR(h->get_pending_data() == 0 and !maxretx_flag, "NACKed harq has no pending data\n"); } } return SRSLTE_SUCCESS; } int sched_tester::update_ue_stats() { // update ue stats with number of allocated UL PRBs for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) { uint32_t L, RBstart; srslte_ra_type2_from_riv(tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.type2_alloc.riv, &L, &RBstart, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); ue_stats[tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.rnti].nof_ul_rbs += L; } // update ue stats with number of DL RB allocations srslte::bounded_bitset<100, true> alloc_mask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) { TESTASSERT(srsenb::extract_dl_prbmask(sched_cell_params[CARRIER_IDX].cfg.cell, tti_info.dl_sched_result[CARRIER_IDX].data[i].dci, alloc_mask) == SRSLTE_SUCCESS); ue_stats[tti_info.dl_sched_result[CARRIER_IDX].data[i].dci.rnti].nof_dl_rbs += alloc_mask.count(); } return SRSLTE_SUCCESS; } void test_scheduler_rand(sched_sim_events sim) { // Create classes sched_tester tester; srsenb::sched my_sched; tester.init(nullptr); tester.sim_cfg(std::move(sim.sim_args)); tester.test_next_ttis(sim.tti_events); } template T pick_random_uniform(std::initializer_list v) { return *(v.begin() + std::uniform_int_distribution{0, v.size() - 1}(srsenb::get_rand_gen())); } sched_sim_events rand_sim_params(uint32_t nof_ttis) { auto boolean_dist = []() { return std::uniform_int_distribution<>{0, 1}(srsenb::get_rand_gen()); }; sched_sim_events sim_gen; uint32_t max_conn_dur = 10000, min_conn_dur = 500; float P_ul_sr = srsenb::randf() * 0.5, P_dl = srsenb::randf() * 0.5; float P_prach = 0.99f; // 0.1f + randf()*0.3f; float ul_sr_exps[] = {1, 4}; // log rand float dl_data_exps[] = {1, 4}; // log rand uint32_t max_nof_users = 5; std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur); std::uniform_int_distribution dist_prb_idx(0, 5); uint32_t prb_idx = dist_prb_idx(srsenb::get_rand_gen()); uint32_t nof_prb = std::array({6, 15, 25, 50, 75, 100})[prb_idx]; printf("Number of PRBs is %u\n", nof_prb); sched_sim_event_generator generator; sim_gen.sim_args.cell_cfg = {generate_default_cell_cfg(nof_prb)}; sim_gen.sim_args.default_ue_sim_cfg.ue_cfg = generate_default_ue_cfg(); sim_gen.sim_args.default_ue_sim_cfg.periodic_cqi = true; sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx = std::uniform_int_distribution<>{1, 5}(srsenb::get_rand_gen()); sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period = pick_random_uniform({0, 40, 80}); sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_offset = std::uniform_int_distribution{ 0, sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period}(srsenb::get_rand_gen()); sim_gen.sim_args.start_tti = 0; sim_gen.sim_args.sim_log = log_global.get(); sim_gen.sim_args.sched_args.pdsch_mcs = boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen()); sim_gen.sim_args.sched_args.pusch_mcs = boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen()); generator.tti_events.resize(nof_ttis); for (uint32_t tti = 0; tti < nof_ttis; ++tti) { for (auto& u : generator.current_users) { uint32_t rnti = u.first; if (srsenb::randf() < P_ul_sr) { float exp = ul_sr_exps[0] + srsenb::randf() * (ul_sr_exps[1] - ul_sr_exps[0]); generator.add_ul_data(rnti, (uint32_t)pow(10, exp)); } if (srsenb::randf() < P_dl) { float exp = dl_data_exps[0] + srsenb::randf() * (dl_data_exps[1] - dl_data_exps[0]); generator.add_dl_data(rnti, (uint32_t)pow(10, exp)); } } // may add new user (For now, we only support one UE per PRACH) bool is_prach_tti = srslte_prach_tti_opportunity_config_fdd(sim_gen.sim_args.cell_cfg[CARRIER_IDX].prach_config, tti, -1); if (is_prach_tti and generator.current_users.size() < max_nof_users and srsenb::randf() < P_prach) { generator.add_new_default_user(connection_dur_dist(srsenb::get_rand_gen()), sim_gen.sim_args.default_ue_sim_cfg.ue_cfg); } generator.step_tti(); } sim_gen.tti_events = std::move(generator.tti_events); return sim_gen; } int main() { // Setup seed srsenb::set_randseed(seed); printf("This is the chosen seed: %u\n", seed); srslte::logmap::set_default_log_level(srslte::LOG_LEVEL_INFO); uint32_t N_runs = 1, nof_ttis = 10240 + 10; for (uint32_t n = 0; n < N_runs; ++n) { printf("Sim run number: %u\n", n + 1); sched_sim_events sim = rand_sim_params(nof_ttis); test_scheduler_rand(std::move(sim)); } return 0; }