/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "rlc_test_common.h" #include "srslte/common/log_filter.h" #include "srslte/upper/rlc_um_lte.h" #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } #define MAX_NBUFS 100 #define NBUFS 5 using namespace srslte; using namespace srsue; using namespace asn1::rrc; // Helper class to create two pre-configured RLC instances class rlc_um_lte_test_context1 { public: rlc_um_lte_test_context1() : log1("RLC_UM_1"), log2("RLC_UM_2"), timers(16), rlc1(&log1, 3, &tester, &tester, &timers), rlc2(&log2, 3, &tester, &tester, &timers) { // setup logging log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); // configure RLC entities rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(10); if (rlc1.configure(cnfg) != true) { fprintf(stderr, "Couldn't configure RLC1 object\n"); } if (rlc2.configure(cnfg) != true) { fprintf(stderr, "Couldn't configure RLC2 object\n"); } tester.set_expected_sdu_len(1); } srslte::log_filter log1, log2; srslte::timer_handler timers; rlc_um_tester tester; rlc_um_lte rlc1, rlc2; }; int basic_test() { rlc_um_lte_test_context1 ctxt; // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == ctxt.rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for (int i = 0; i < NBUFS; i++) { int len = ctxt.rlc1.read_pdu(pdu_bufs[i].msg, 4); // 3 bytes for header + payload pdu_bufs[i].N_bytes = len; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write 5 PDUs into RLC2 for (int i = 0; i < NBUFS; i++) { ctxt.rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(NBUFS == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == 1); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return 0; } int loss_test() { rlc_um_lte_test_context1 ctxt; // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for (int i = 0; i < NBUFS; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); sdu_bufs[i]->msg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == ctxt.rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for (int i = 0; i < NBUFS; i++) { int len = ctxt.rlc1.read_pdu(pdu_bufs[i].msg, 4); // 3 bytes for header + payload pdu_bufs[i].N_bytes = len; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write 5 PDUs into RLC2 (skip SN 1) for (int i = 0; i < NBUFS; i++) { if (i != 1) { ctxt.rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } } // Step the reordering timer until expiry while (ctxt.timers.nof_running_timers() != 0) { ctxt.timers.step_all(); } TESTASSERT(NBUFS - 1 == ctxt.tester.sdus.size()); return 0; } int basic_mbsfn_test() { rlc_um_lte_test_context1 ctxt; // configure as MCH ctxt.rlc1.configure(rlc_config_t::mch_config()); ctxt.rlc2.configure(rlc_config_t::mch_config()); // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS * 2]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(13 == ctxt.rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS*2]; for(int i=0;iN_bytes == 1); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return 0; } // This test checks the reassembly routines when a PDU // is lost that contains the beginning of SDU segment. // The PDU that contains the end of this SDU _also_ contains // a segment of another SDU. // On reassembly of the SDUs, the missing start segment // should be detected and the complete SDU be discarded // Therefore, one SDU less should be received than was tx'ed. // This test sends PDU in two batches so it's not the reordering // timeout that detects the missing PDU but the fact more // PDUs than rx_mod are received. int reassmble_test() { rlc_um_lte_test_context1 ctxt; // reconfigure them with 5bit SNs rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(5); ctxt.rlc1.configure(cnfg); ctxt.rlc2.configure(cnfg); // Push SDUs into RLC1 const int n_sdus = 25; const int sdu_len = 100; ctxt.tester.set_expected_sdu_len(sdu_len); const int n_sdu_first_batch = 17; byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[n_sdus]; for(int i=0;imsg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read PDUs from RLC1 (use smaller grant for first PDU and large for the rest) const int max_n_pdus = 100; int n_pdus = 0; byte_buffer_t* pdu_bufs[max_n_pdus]; for(int i=0;iallocate(); int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * 3 / 4 : sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in first batch\n", n_pdus); TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // push second batch of SDUs for (int i = n_sdu_first_batch; i < n_sdus; ++i) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for (int k = 0; k < sdu_len; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read second batch of PDUs (use large grants) for (int i = n_pdus; i < max_n_pdus; i++) { pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate(); int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { // stop reading PDUs after first zero length PDU break; } } printf("Generated %d PDUs in total\n", n_pdus); // Write all PDUs into RLC2 except first one for(int i=0;imsg, pdu_bufs[i]->N_bytes); } } // We should have received one SDU less than we tx'ed TESTASSERT(ctxt.tester.sdus.size() == n_sdus - 1); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); ++i) { TESTASSERT(ctxt.tester.sdus[i]->N_bytes == sdu_len); } return 0; } // This reassmble test checks the reassembly routines when a PDU // is lost that _only_ contains the beginning of SDU segment, // while the next PDU contains the middle part of this SDU (and // yet another PDU the end part). // On reassembly of the SDUs, the missing start segment // should be detected and the complete SDU be discarded // Therefore, one SDU less should be received than was tx'ed. int reassmble_test2() { rlc_um_lte_test_context1 ctxt; // reconfigure them with 5bit SNs rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(5); ctxt.rlc1.configure(cnfg); ctxt.rlc2.configure(cnfg); // Push SDUs into RLC1 const int n_sdus = 25; const int sdu_len = 100; ctxt.tester.set_expected_sdu_len(sdu_len); const int n_sdu_first_batch = 17; byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[n_sdus]; for(int i=0;imsg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } const int max_n_pdus = 100; int n_pdus = 0; byte_buffer_t* pdu_bufs[max_n_pdus]; for (int i = 0; i < max_n_pdus; i++) { pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate(); int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * .75 : sdu_len * .25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in first batch\n", n_pdus); TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // push second batch of SDUs for (int i = n_sdu_first_batch; i < n_sdus; ++i) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for (int k = 0; k < sdu_len; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read second batch of PDUs for(int i=n_pdus;iallocate(); int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in total\n", n_pdus); // Write all PDUs into RLC2 except first one for(int i=0;imsg, pdu_bufs[i]->N_bytes); } } // We should have received one SDU less than we tx'ed TESTASSERT(ctxt.tester.sdus.size() == n_sdus - 1); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); ++i) { TESTASSERT(ctxt.tester.sdus[i]->N_bytes == sdu_len); } return 0; } int main(int argc, char** argv) { if (basic_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (loss_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (basic_mbsfn_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (reassmble_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (reassmble_test2()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); }