/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "srsenb/hdr/mac/mac.h" #include "srsenb/hdr/phy/phy.h" #include "srslte/common/log_filter.h" #include "srslte/interfaces/enb_interfaces.h" #include "srslte/interfaces/sched_interface.h" #include "srslte/phy/utils/debug.h" #include "srslte/radio/radio.h" // Create classes long int seed = time(NULL); uint32_t err_counter = 0; uint32_t warn_counter = 0; struct ue_stats_t { uint64_t nof_dl_rbs = 0; uint64_t nof_ul_rbs = 0; }; std::map ue_stats; /******************* * Logging * *******************/ class log_tester : public srslte::log_filter { public: explicit log_tester(std::string layer) : srslte::log_filter(layer) {} void error(const char* message, ...) __attribute__((format(printf, 2, 3))); }; void log_tester::error(const char* message, ...) { if (level >= srslte::LOG_LEVEL_ERROR) { char* args_msg = NULL; va_list args; va_start(args, message); if (vasprintf(&args_msg, message, args) > 0) all_log(srslte::LOG_LEVEL_ERROR, tti, args_msg); va_end(args); free(args_msg); } } log_tester log_out("ALL"); void log_on_exit() { log_out.info("[TESTER] UE stats:\n"); for (auto& e : ue_stats) { log_out.info("0x%x: {DL RBs: %lu, UL RBs: %lu}\n", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs); } log_out.info("[TESTER] This was the seed: %ld\n", seed); } #define Warning(fmt, ...) \ log_out.warning(fmt, ##__VA_ARGS__); \ warn_counter++; #define TestError(fmt, ...) \ log_out.error(fmt, ##__VA_ARGS__); \ log_on_exit(); \ exit(-1); #define CondError(cond, fmt, ...) \ if (cond) { \ log_out.error(fmt, ##__VA_ARGS__); \ log_on_exit(); \ exit(-1); \ } /******************* * Dummies * *******************/ float randf() { return (float)((double)rand() / (RAND_MAX)); } struct sched_sim_args { struct tti_event_t { struct user_event_t { uint32_t sr_data; uint32_t dl_data; uint32_t dl_nof_retxs; user_event_t() : sr_data(0), dl_data(0), dl_nof_retxs(0) {} }; std::map users; bool new_user; bool rem_user; uint32_t new_rnti; uint32_t rem_rnti; tti_event_t() : new_user(false), rem_user(false) {} }; std::vector tti_events; uint32_t nof_ttis; float P_retx; srsenb::sched_interface::ue_cfg_t ue_cfg; srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg; }; // Designed for testing purposes struct sched_tester : public srsenb::sched { struct dl_harq_params_t { uint32_t pid; uint32_t nof_retxs; uint32_t tti; bool is_empty = true; bool pending_retx = false; dl_harq_params_t() = default; dl_harq_params_t(const srsenb::dl_harq_proc& h, uint32_t tti_tx_dl) { pid = h.get_id(); nof_retxs = h.nof_retx(0); tti = h.get_tti(); is_empty = h.is_empty(); pending_retx = h.has_pending_retx(0, tti_tx_dl); // or h.has_pending_retx(1, h.get_tti()); } }; struct tester_user_results { uint32_t dl_pending_data = 0; uint32_t ul_pending_data = 0; ///< data pending for UL bool has_dl_retx = false; bool has_dl_tx = false; bool has_ul_tx = false; ///< has either tx or retx bool has_ul_retx = false; bool has_ul_newtx = false; ///< *no* retx, but has tx bool ul_retx_got_delayed = false; srsenb::sched_interface::ul_sched_data_t* ul_sched = NULL; // fast lookup srsenb::sched_interface::dl_sched_data_t* dl_sched = NULL; // fast lookup dl_harq_params_t dl_harqs[2 * FDD_HARQ_DELAY_MS]; }; struct sched_tti_data { bool is_prach_tti_tx_ul = false; uint32_t ul_sf_idx; uint32_t tti_rx; uint32_t tti_tx_dl; uint32_t tti_tx_ul; uint32_t current_cfi; pending_msg3_t ul_pending_msg3; srslte::bounded_bitset<128, true> used_cce; // std::vector used_cce; std::map ue_data; ///< stores buffer state of each user tester_user_results total_ues; ///< stores combined UL/DL buffer state srsenb::sched_interface::ul_sched_res_t sched_result_ul; srsenb::sched_interface::dl_sched_res_t sched_result_dl; typedef std::map::iterator ue_it_t; }; struct ue_info { int prach_tti, rar_tti, msg3_tti; uint32_t ra_id; srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg; srsenb::sched_interface::ue_cfg_t user_cfg; uint32_t dl_data; uint32_t ul_data; ue_info() : prach_tti(-1), rar_tti(-1), msg3_tti(-1), dl_data(0), ul_data(0) {} }; struct ack_info_t { uint16_t rnti; uint32_t tti; bool dl_ack; uint32_t retx_delay; dl_harq_params_t dl_harq; ack_info_t() : dl_ack(false), retx_delay(0) {} }; sched_sim_args sim_args; // tester control data typedef std::map::iterator ue_it_t; std::map tester_ues; std::multimap to_ack; typedef std::multimap::iterator ack_it_t; // sched results sched_tti_data tti_data; void add_user(uint16_t rnti, srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg, srsenb::sched_interface::ue_cfg_t ue_cfg_); void rem_user(uint16_t rnti); void test_ra(); void test_dci_locations(); void assert_no_empty_allocs(); void test_collisions(); void test_harqs(); void run_tti(uint32_t tti_rx); private: void new_tti(uint32_t tti_); void process_tti_args(); void before_sched(); void process_results(); void ack_txs(); }; void sched_tester::add_user(uint16_t rnti, srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg, srsenb::sched_interface::ue_cfg_t ue_cfg_) { uint32_t ra_id = rand() % 5; ue_info info; info.prach_tti = tti_data.tti_rx; info.ra_id = ra_id; info.bearer_cfg = bearer_cfg; info.user_cfg = ue_cfg_; tester_ues.insert(std::make_pair(rnti, info)); if (ue_cfg(rnti, &ue_cfg_)) { TestError("[TESTER] Registering new user rnti=0x%x to SCHED\n", rnti); } dl_rach_info(tti_data.tti_rx, ra_id, rnti, 7); // setup bearers bearer_ue_cfg(rnti, 0, &bearer_cfg); log_out.info("[TESTER] Adding user rnti=0x%x\n", rnti); } void sched_tester::rem_user(uint16_t rnti) { tester_ues.erase(rnti); tti_data.ue_data.erase(rnti); } void sched_tester::new_tti(uint32_t tti_) { // NOTE: make a local copy, since some of these variables may be cleared during scheduling tti_data.tti_rx = tti_; tti_data.tti_tx_dl = TTI_TX(tti_); tti_data.tti_tx_ul = TTI_RX_ACK(tti_); tti_data.is_prach_tti_tx_ul = srslte_prach_tti_opportunity_config_fdd(cfg.prach_config, tti_data.tti_tx_ul, -1); if (tti_data.tti_tx_ul > FDD_HARQ_DELAY_MS) { tti_data.ul_sf_idx = (tti_data.tti_tx_ul - FDD_HARQ_DELAY_MS) % 10; } else { tti_data.ul_sf_idx = (tti_data.tti_tx_ul + 10240 - FDD_HARQ_DELAY_MS) % 10; } tti_data.ul_pending_msg3 = pending_msg3[tti_data.tti_tx_ul % 10]; tti_data.current_cfi = sched_cfg.nof_ctrl_symbols; tti_data.used_cce.resize(srslte_regs_pdcch_ncce(®s, tti_data.current_cfi)); tti_data.used_cce.reset(); tti_data.ue_data.clear(); tti_data.total_ues = tester_user_results(); } void sched_tester::process_tti_args() { // may add a new user if (sim_args.tti_events[tti_data.tti_rx].new_user) { CondError(!srslte_prach_tti_opportunity_config_fdd(cfg.prach_config, tti_data.tti_rx, -1), "[TESTER] New user added in a non-PRACH TTI\n"); uint16_t rnti = sim_args.tti_events[tti_data.tti_rx].new_rnti; add_user(rnti, sim_args.bearer_cfg, sim_args.ue_cfg); } // may remove an existing user if (sim_args.tti_events[tti_data.tti_rx].rem_user) { uint16_t rnti = sim_args.tti_events[tti_data.tti_rx].rem_rnti; bearer_ue_rem(rnti, 0); ue_rem(rnti); rem_user(rnti); log_out.info("[TESTER] Removing user rnti=0x%x\n", rnti); } // push UL SRs and DL packets for (auto& e : sim_args.tti_events[tti_data.tti_rx].users) { if (e.second.sr_data > 0) { uint32_t tot_ul_data = ue_db[e.first].get_pending_ul_new_data(tti_data.tti_tx_ul) + e.second.sr_data; uint32_t lcid = 0; ul_bsr(e.first, lcid, tot_ul_data); } if (e.second.dl_data > 0) { uint32_t lcid = 0; // FIXME: Does it need TTI for checking pending data? uint32_t tot_dl_data = ue_db[e.first].get_pending_dl_new_data(tti_data.tti_tx_dl) + e.second.dl_data; dl_rlc_buffer_state(e.first, lcid, tot_dl_data, 0); } } } void sched_tester::before_sched() { typedef std::map::iterator it_t; // check pending data buffers for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) { uint16_t rnti = it->first; srsenb::sched_ue* user = &it->second; tester_user_results d; srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_data.tti_tx_ul); d.ul_pending_data = get_ul_buffer(rnti); // user->get_pending_ul_new_data(tti_data.tti_tx_ul) or hul->has_pending_retx(); // get_ul_buffer(rnti); d.dl_pending_data = get_dl_buffer(rnti); d.has_ul_retx = hul->has_pending_retx(); d.has_ul_tx = d.has_ul_retx or d.ul_pending_data > 0; srsenb::dl_harq_proc* hdl = user->get_pending_dl_harq(tti_data.tti_tx_dl); d.has_dl_retx = (hdl != NULL) and hdl->has_pending_retx(0, tti_data.tti_tx_dl); d.has_dl_tx = (hdl != NULL) or (it->second.get_empty_dl_harq() != NULL and d.dl_pending_data > 0); d.has_ul_newtx = not d.has_ul_retx and d.ul_pending_data > 0; tti_data.ue_data.insert(std::make_pair(rnti, d)); tti_data.total_ues.dl_pending_data += d.dl_pending_data; tti_data.total_ues.ul_pending_data += d.ul_pending_data; tti_data.total_ues.has_ul_tx |= d.has_ul_tx; tti_data.total_ues.has_dl_tx |= d.has_dl_tx; tti_data.total_ues.has_ul_newtx |= d.has_ul_newtx; for (uint32_t i = 0; i < 2 * FDD_HARQ_DELAY_MS; ++i) { const srsenb::dl_harq_proc* h = user->get_dl_harq(i); tti_data.ue_data[rnti].dl_harqs[i] = dl_harq_params_t(*h, tti_data.tti_tx_dl); } } // TODO: Check whether pending pending_rar.rar_tti correspond to a prach_tti } void sched_tester::process_results() { for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { uint16_t rnti = tti_data.sched_result_ul.pusch[i].dci.rnti; tti_data.ue_data[rnti].ul_sched = &tti_data.sched_result_ul.pusch[i]; CondError(tester_ues.count(rnti) == 0, "[TESTER] [%d] The user rnti=0x%x that no longer exists got allocated.\n", tti_data.tti_rx, rnti); } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) { uint16_t rnti = tti_data.sched_result_dl.data[i].dci.rnti; tti_data.ue_data[rnti].dl_sched = &tti_data.sched_result_dl.data[i]; CondError(tester_ues.count(rnti) == 0, "[TESTER] [%d] The user rnti=0x%x that no longer exists got allocated.\n", tti_data.tti_rx, rnti); } test_dci_locations(); test_ra(); test_collisions(); assert_no_empty_allocs(); test_harqs(); } void sched_tester::run_tti(uint32_t tti_rx) { new_tti(tti_rx); log_out.info("[TESTER] ---- tti=%u | nof_ues=%lu ----\n", tti_rx, ue_db.size()); process_tti_args(); ack_txs(); before_sched(); dl_sched(tti_data.tti_tx_dl, &tti_data.sched_result_dl); ul_sched(tti_data.tti_tx_ul, &tti_data.sched_result_ul); process_results(); } /** * Tests whether the RAR and Msg3 were scheduled within the expected windows */ void sched_tester::test_ra() { uint32_t msg3_count = 0; // Test if allocations only take place for users with pending data or in RAR for (auto& iter : tti_data.ue_data) { uint16_t rnti = iter.first; sched_tester::ue_info& userinfo = tester_ues[rnti]; // Check whether RA has completed correctly int prach_tti = userinfo.prach_tti; if (userinfo.msg3_tti <= prach_tti) { // Msg3 not yet sent bool rar_not_sent = prach_tti >= userinfo.rar_tti; uint32_t window[2] = {(uint32_t)prach_tti + 3, prach_tti + 3 + cfg.prach_rar_window}; if (rar_not_sent) { CondError(tti_data.tti_tx_dl > window[1], "[TESTER] There was no RAR scheduled within the RAR Window\n"); if (tti_data.tti_tx_dl >= window[0]) { for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) { for (uint32_t j = 0; j < tti_data.sched_result_dl.rar[i].nof_grants; ++j) { if (tti_data.sched_result_dl.rar[i].msg3_grant[j].ra_id == userinfo.ra_id) { userinfo.rar_tti = tti_data.tti_tx_dl; } } } } } else { // RAR completed, check for Msg3 uint32_t msg3_tti = (uint32_t)(userinfo.rar_tti + FDD_HARQ_DELAY_MS + MSG3_DELAY_MS) % 10240; if (msg3_tti == tti_data.tti_tx_ul) { for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { if (tti_data.sched_result_ul.pusch[i].dci.rnti == rnti) { CondError(tti_data.sched_result_ul.pusch[i].needs_pdcch, "[TESTER] Msg3 allocations do not require PDCCH\n"); CondError(tti_data.ul_pending_msg3.rnti != rnti, "[TESTER] The UL pending msg3 RNTI did not match\n"); CondError(not tti_data.ul_pending_msg3.enabled, "[TESTER] The UL pending msg3 RNTI did not match\n"); userinfo.msg3_tti = tti_data.tti_tx_ul; msg3_count++; } } CondError(msg3_count == 0, "[TESTER] No UL msg3 allocation was made\n"); } else if (msg3_tti < tti_data.tti_tx_ul) { TestError("[TESTER] No UL msg3 allocation was made\n"); } } } } for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { msg3_count -= tti_data.sched_result_ul.pusch[i].needs_pdcch ? 0 : 1; } CondError(msg3_count > 0, "[TESTER] There are pending msg3 that do not belong to any active UE\n"); } void sched_tester::assert_no_empty_allocs() { // Test if allocations only take place for users with pending data or in RAR for (auto& iter : tti_data.ue_data) { uint16_t rnti = iter.first; srsenb::sched_ue* user = &ue_db[rnti]; if (!iter.second.has_ul_tx and tti_data.ue_data[rnti].ul_sched != NULL and tti_data.ue_data[rnti].ul_sched->needs_pdcch) { // FIXME: This test does not work for adaptive re-tx TestError("[TESTER] There was a user without data that got allocated in UL\n"); } srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_data.tti_tx_ul); iter.second.ul_retx_got_delayed = iter.second.has_ul_retx and hul->is_new_tx(); tti_data.total_ues.ul_retx_got_delayed |= iter.second.ul_retx_got_delayed; // Retxs cannot give space to newtx allocations CondError( tti_data.total_ues.ul_retx_got_delayed, "[TESTER] There was a retx that was erased for user rnti=0x%x\n", rnti); } // There must be allocations if there is pending data/retxs. bool no_dl_allocs = true; for (std::map::iterator it = tti_data.ue_data.begin(); it != tti_data.ue_data.end(); ++it) { if (it->second.dl_sched != NULL) { no_dl_allocs = false; } } // CondError(tti_data.total_ues.has_dl_tx and no_dl_allocs, "There was pending DL data but no user got allocated\n"); // FIXME: You have to verify if there is space for the retx since it is non-adaptive } /** * Tests whether there were collisions in the DCI allocations */ void sched_tester::test_dci_locations() { // checks if there is any collision. If not, fills the mask auto try_fill = [&](const srslte_dci_location_t& dci_loc, const char* ch) { uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L); if (tti_data.used_cce.any(cce_start, cce_stop)) { TestError("[TESTER] %s DCI collision between CCE positions (%u, %u)\n", ch, cce_start, cce_stop); } tti_data.used_cce.fill(cce_start, cce_stop); }; // verify there are no dci collisions for UL, DL data, BC, RAR for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { if (not tti_data.sched_result_ul.pusch[i].needs_pdcch) { // In case of adaptive retx or Msg3 continue; } srslte_dci_location_t& dci_loc = tti_data.sched_result_ul.pusch[i].dci.location; CondError(dci_loc.L == 0, "[TESTER] Invalid aggregation level %d\n", dci_loc.L); // TODO: Extend this test try_fill(dci_loc, "UL"); } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) { try_fill(tti_data.sched_result_dl.data[i].dci.location, "DL data"); } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_bc_elems; ++i) { try_fill(tti_data.sched_result_dl.bc[i].dci.location, "DL BC"); } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) { try_fill(tti_data.sched_result_dl.rar[i].dci.location, "DL RAR"); } // verify if sched_result "used_cce" coincide with sched "used_cce" if (tti_data.used_cce != sched_vars.tti_vars(tti_data.tti_rx).used_cce) { TestError("[TESTER] The used_cce do not match: %s\n", sched_vars.tti_vars(tti_data.tti_rx).used_cce.to_string().c_str()); } // FIXME: Check postponed retxs // typedef std::map::iterator it_t; // // There must be allocations if there is pending data/retxs. // if(total_ues.has_ul_tx and ul_sched_result.empty()) { // for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) { // uint32_t aggr_level = it->second.get_aggr_level(srslte_dci_format_sizeof(SRSLTE_DCI_FORMAT0, cfg.cell.nof_prb, // cfg.cell.nof_ports)); if (find_empty_dci(it->second.get_locations(current_cfi, sf_idx), aggr_level) > 0) { // TestError("[%d] There was pending UL data and free CCEs, but no user got allocated\n", tti_data.tti_rx); // } // } // } } void sched_tester::test_harqs() { // check consistency of harq procedures and allocations for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) { uint32_t h_id = tti_data.sched_result_dl.data[i].dci.pid; uint16_t rnti = tti_data.sched_result_dl.data[i].dci.rnti; const srsenb::dl_harq_proc* h = ue_db[rnti].get_dl_harq(h_id); CondError(h == NULL, "[TESTER] scheduled DL harq pid=%d does not exist\n", h_id); CondError(h->is_empty(), "[TESTER] Cannot schedule an empty harq proc\n"); CondError(h->get_tti() != tti_data.tti_tx_dl, "[TESTER] The scheduled DL harq pid=%d does not a valid tti=%u", h_id, tti_data.tti_tx_dl); if (tti_data.ue_data[rnti].dl_harqs[h_id].pending_retx) { // retx CondError(tti_data.ue_data[rnti].dl_harqs[h_id].nof_retxs + 1 != h->nof_retx(0), "[TESTER] A dl harq of user rnti=0x%x was likely overwritten.\n", rnti); } else { // newtx CondError(h->nof_retx(0) != 0, "[TESTER] A new harq was scheduled but with invalid number of retxs\n"); } } // schedule future acks for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) { ack_info_t ack_data; ack_data.rnti = tti_data.sched_result_dl.data[i].dci.rnti; ack_data.tti = FDD_HARQ_DELAY_MS + tti_data.tti_tx_dl; const srsenb::dl_harq_proc* dl_h = ue_db[ack_data.rnti].get_dl_harq(tti_data.sched_result_dl.data[i].dci.pid); ack_data.dl_harq = dl_harq_params_t(*dl_h, tti_data.tti_tx_dl); if (ack_data.dl_harq.nof_retxs == 0) { ack_data.dl_ack = randf() > sim_args.P_retx; } else { // always ack after three retxs ack_data.dl_ack = ack_data.dl_harq.nof_retxs == 3; } // Remove harq from the ack list if there was a harq rewrite ack_it_t it = to_ack.begin(); while (it != to_ack.end() and it->first < ack_data.tti) { if (it->second.rnti == ack_data.rnti and it->second.dl_harq.pid == ack_data.dl_harq.pid) { CondError(it->second.tti + 2 * FDD_HARQ_DELAY_MS > ack_data.tti, "[TESTER] The retx dl harq id=%d was transmitted too soon\n", ack_data.dl_harq.pid); ack_it_t toerase_it = it++; to_ack.erase(toerase_it); continue; } ++it; } // add new ack to the list to_ack.insert(std::make_pair(ack_data.tti, ack_data)); } // // Check whether some pids got old // for (auto& e : ue_db) { // for (int i = 0; i < 2 * FDD_HARQ_DELAY_MS; i++) { // if (not(e.second.get_dl_harq(i)->is_empty(0) and e.second.get_dl_harq(1))) { // if (srslte_tti_interval(tti_data.tti_tx_dl, e.second.get_dl_harq(i)->get_tti()) > 49) { // TestError("[TESTER] The pid=%d for rnti=0x%x got old.\n", e.second.get_dl_harq(i)->get_id(), e.first); // } // } // } // } } void sched_tester::test_collisions() { srsenb::ul_mask_t ul_allocs; ul_allocs.resize(cfg.cell.nof_prb); // TEST: Check if there is space for PRACH if (tti_data.is_prach_tti_tx_ul) { srsenb::ul_harq_proc::ul_alloc_t prach_alloc = {cfg.prach_freq_offset, 6}; if (ul_allocs.any(prach_alloc)) { TestError("[TESTER] There is a collision with the PRACH\n"); } ul_allocs.fill(prach_alloc); } // TEST: check collisions in the UL PUSCH and PUCCH for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { uint32_t L, RBstart; srslte_ra_type2_from_riv( tti_data.sched_result_ul.pusch[i].dci.type2_alloc.riv, &L, &RBstart, cfg.cell.nof_prb, cfg.cell.nof_prb); CondError((RBstart + L) > cfg.cell.nof_prb, "[TESTER] Allocated RBs (%d,%d) out of bounds (0,%d)\n", RBstart, RBstart + L, cfg.cell.nof_prb); ue_stats[tti_data.sched_result_ul.pusch[i].dci.rnti].nof_ul_rbs += L; if (ul_allocs.any(RBstart, RBstart + L)) { TestError("[TESTER] There is a collision for UE UL data alloc=(%d,%d) with joint mask=%s\n", RBstart, RBstart + L, ul_allocs.to_hex().c_str()); } ul_allocs.fill(RBstart, RBstart + L, true); } // Fill PUCCH if (cfg.cell.nof_prb != 6 or (not tti_data.is_prach_tti_tx_ul and not tti_data.ul_pending_msg3.enabled)) { if (ul_allocs.any(0, cfg.nrb_pucch) or ul_allocs.any(cfg.cell.nof_prb - cfg.nrb_pucch, cfg.cell.nof_prb)) { TestError("[TESTER] There is a collision with the PUCCH\n"); } } ul_allocs.fill(0, cfg.nrb_pucch); ul_allocs.fill(cfg.cell.nof_prb - cfg.nrb_pucch, cfg.cell.nof_prb); // TEST: Check if there is a collision with Msg3 or Msg3 alloc data is not consistent if (tti_data.ul_pending_msg3.enabled) { srsenb::ul_harq_proc::ul_alloc_t msg3_alloc = {tti_data.ul_pending_msg3.n_prb, tti_data.ul_pending_msg3.L}; for (uint32_t i = msg3_alloc.RB_start; i < msg3_alloc.RB_start + msg3_alloc.L; ++i) { if (not ul_allocs.test(i)) { TestError( "[TESTER] The RB %d was not allocated for the msg3 alloc=(%d,%d)\n", i, msg3_alloc.RB_start, msg3_alloc.L); } } bool passed = false; for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) { if (tti_data.ul_pending_msg3.rnti == tti_data.sched_result_ul.pusch[i].dci.rnti) { CondError(passed, "[TESTER] There can only be one msg3 allocation per UE\n"); CondError(tti_data.sched_result_ul.pusch[i].needs_pdcch, "[TESTER] Msg3 allocations do not need PDCCH DCI\n"); uint32_t L, RBstart; srslte_ra_type2_from_riv( tti_data.sched_result_ul.pusch[i].dci.type2_alloc.riv, &L, &RBstart, cfg.cell.nof_prb, cfg.cell.nof_prb); if (RBstart != tti_data.ul_pending_msg3.n_prb or L != tti_data.ul_pending_msg3.L) { TestError("[TESTER] The Msg3 allocation does not coincide with the expected.\n"); } passed = true; } } CondError(not passed, "[TESTER] No Msg3 allocation was found in the sched_result\n"); } // NOTE: Not possible until DCI conflict issue is resolved // // TEST: final mask // if(ul_allocs != ul_mask) { // TestError("[TESTER] The UL PRB mask and the scheduler result UL mask are not consistent\n"); // } srslte::bounded_bitset<100, true> dl_allocs, alloc_mask; dl_allocs.resize(cfg.cell.nof_prb); alloc_mask.resize(cfg.cell.nof_prb); srslte_dl_sf_cfg_t dl_sf; ZERO_OBJECT(dl_sf); for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) { alloc_mask.reset(); srslte_pdsch_grant_t grant; CondError(srslte_ra_dl_dci_to_grant(&cfg.cell, &dl_sf, SRSLTE_TM1, &tti_data.sched_result_dl.data[i].dci, &grant) == SRSLTE_ERROR, "Failed to decode PDSCH grant\n"); for (uint32_t i = 0; i < alloc_mask.size(); ++i) { if (grant.prb_idx[0][i]) { alloc_mask.set(i); } else { alloc_mask.reset(i); } } if ((dl_allocs & alloc_mask).any()) { TestError("[TESTER] Detected collision in the DL data allocation (%s intersects %s)\n", dl_allocs.to_string().c_str(), alloc_mask.to_string().c_str()); } dl_allocs |= alloc_mask; ue_stats[tti_data.sched_result_dl.data[i].dci.rnti].nof_dl_rbs += alloc_mask.count(); } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_bc_elems; ++i) { alloc_mask.reset(); srslte_pdsch_grant_t grant; CondError(srslte_ra_dl_dci_to_grant(&cfg.cell, &dl_sf, SRSLTE_TM1, &tti_data.sched_result_dl.bc[i].dci, &grant) == SRSLTE_ERROR, "Failed to decode PDSCH grant\n"); for (uint32_t i = 0; i < alloc_mask.size(); ++i) { if (grant.prb_idx[0][i]) { alloc_mask.set(i); } else { alloc_mask.reset(i); } } if ((dl_allocs & alloc_mask).any()) { TestError("[TESTER] Detected collision in the DL bc allocation (%s intersects %s)\n", dl_allocs.to_string().c_str(), alloc_mask.to_string().c_str()); } dl_allocs |= alloc_mask; } for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) { alloc_mask.reset(); srslte_pdsch_grant_t grant; CondError(srslte_ra_dl_dci_to_grant(&cfg.cell, &dl_sf, SRSLTE_TM1, &tti_data.sched_result_dl.rar[i].dci, &grant) == SRSLTE_ERROR, "Failed to decode PDSCH grant\n"); for (uint32_t i = 0; i < alloc_mask.size(); ++i) { if (grant.prb_idx[0][i]) { alloc_mask.set(i); } else { alloc_mask.reset(i); } } if ((dl_allocs & alloc_mask).any()) { TestError("[TESTER] Detected collision in the DL RAR allocation (%s intersects %s)\n", dl_allocs.to_string().c_str(), alloc_mask.to_string().c_str()); } dl_allocs |= alloc_mask; } // TEST: check if resulting DL mask is equal to scheduler internal DL mask srsenb::rbgmask_t rbgmask(nof_rbg); srslte::bounded_bitset<100, true> rev_alloc = ~dl_allocs; for (uint32_t i = 0; i < nof_rbg; ++i) { uint32_t lim = SRSLTE_MIN((i + 1) * P, dl_allocs.size()); bool val = dl_allocs.any(i * P, lim); CondError(rev_alloc.any(i * P, lim) and val, "[TESTER] No holes can be left in an RBG\n"); if (val) { rbgmask.set(i); } else { rbgmask.reset(i); } } if (rbgmask != dl_mask and not fail_dci_alloc) { TestError("[TESTER] The UL PRB mask and the scheduler result UL mask are not consistent\n"); } } void sched_tester::ack_txs() { typedef std::map::iterator it_t; for (ack_it_t it = to_ack.begin(); it != to_ack.end() and it->first <= tti_data.tti_rx;) { if (ue_db.count(it->second.rnti) == 0) { ack_it_t erase_it = it++; to_ack.erase(erase_it); continue; } if (it->second.tti == tti_data.tti_rx) { bool ret = false; for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; ++tb) { ret |= dl_ack_info(tti_data.tti_rx, it->second.rnti, tb, it->second.dl_ack) > 0; } CondError(not ret, "[TESTER] The dl harq proc that was acked does not exist\n"); if (it->second.dl_ack) log_out.info( "[TESTER] DL ACK tti=%u rnti=0x%x pid=%d\n", tti_data.tti_rx, it->second.rnti, it->second.dl_harq.pid); ack_it_t erase_it = it++; to_ack.erase(erase_it); continue; } ++it; } bool ack = true; //(tti_data.tti_rx % 3) == 0; if (tti_data.tti_rx >= FDD_HARQ_DELAY_MS) { for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) { uint16_t rnti = it->first; srsenb::ul_harq_proc* h = ue_db[rnti].get_ul_harq(tti_data.tti_rx); if (h != NULL and not h->is_empty()) { ul_crc_info(tti_data.tti_rx, rnti, ack); } } } } srsenb::sched_interface::cell_cfg_t generate_cell_cfg() { srsenb::sched_interface::cell_cfg_t cell_cfg; srslte_cell_t& cell_cfg_phy = cell_cfg.cell; bzero(&cell_cfg, sizeof(srsenb::sched_interface::cell_cfg_t)); /* Set PHY cell configuration */ cell_cfg_phy.id = 1; cell_cfg_phy.cp = SRSLTE_CP_NORM; cell_cfg_phy.nof_ports = 1; cell_cfg_phy.nof_prb = 100; cell_cfg_phy.phich_length = SRSLTE_PHICH_NORM; cell_cfg_phy.phich_resources = SRSLTE_PHICH_R_1; cell_cfg.sibs[0].len = 18; cell_cfg.sibs[0].period_rf = 8; cell_cfg.sibs[1].len = 41; cell_cfg.sibs[1].period_rf = 16; cell_cfg.si_window_ms = 40; cell_cfg.nrb_pucch = 2; cell_cfg.prach_freq_offset = (cell_cfg_phy.nof_prb == 6) ? 0 : 2; cell_cfg.prach_rar_window = 3; cell_cfg.maxharq_msg3tx = 3; return cell_cfg; } void test_scheduler_rand(srsenb::sched_interface::cell_cfg_t cell_cfg, const sched_sim_args& args) { // Create classes sched_tester tester; srsenb::sched my_sched; srsenb::dl_metric_rr dl_metric; srsenb::ul_metric_rr ul_metric; log_out.set_level(srslte::LOG_LEVEL_INFO); tester.sim_args = args; srslte_cell_t& cell_cfg_phy = cell_cfg.cell; srsenb::sched_interface::dl_sched_res_t& sched_result_dl = tester.tti_data.sched_result_dl; srsenb::sched_interface::ul_sched_res_t& sched_result_ul = tester.tti_data.sched_result_ul; tester.init(NULL, &log_out); tester.set_metric(&dl_metric, &ul_metric); tester.cell_cfg(&cell_cfg); bool running = true; uint32_t tti = 0; uint32_t nof_ttis = 0; while (running) { if (nof_ttis > args.nof_ttis) { running = false; } log_out.step(tti); tester.run_tti(tti); nof_ttis++; tti = (tti + 1) % 10240; } } sched_sim_args rand_sim_params(const srsenb::sched_interface::cell_cfg_t& cell_cfg, uint32_t nof_ttis) { sched_sim_args sim_args; std::vector > current_rntis; uint16_t rnti_start = 70; uint32_t max_conn_dur = 10000, min_conn_dur = 5000; float P_ul_sr = randf() * 0.5, P_dl = randf() * 0.5; float P_prach = 0.99f; // 0.1f + randf()*0.3f; float ul_sr_exps[] = {1, 4}; // log rand float dl_data_exps[] = {1, 4}; // log rand uint32_t max_nof_users = 500; bzero(&sim_args.ue_cfg, sizeof(srsenb::sched_interface::ue_cfg_t)); sim_args.ue_cfg.aperiodic_cqi_period = 40; sim_args.ue_cfg.maxharq_tx = 5; bzero(&sim_args.bearer_cfg, sizeof(srsenb::sched_interface::ue_bearer_cfg_t)); sim_args.bearer_cfg.direction = srsenb::sched_interface::ue_bearer_cfg_t::BOTH; sim_args.nof_ttis = nof_ttis; sim_args.P_retx = 0.1; sim_args.tti_events.resize(sim_args.nof_ttis); for (uint32_t tti = 0; tti < sim_args.tti_events.size(); ++tti) { if (not current_rntis.empty()) { // may rem user for (uint32_t i = 0; i < current_rntis.size(); ++i) { if (current_rntis[i][2] + current_rntis[i][1] <= tti) { std::vector >::iterator it_to_rem = current_rntis.begin() + i; sim_args.tti_events[tti].rem_user = true; sim_args.tti_events[tti].rem_rnti = (*it_to_rem)[0]; current_rntis.erase(it_to_rem); } } for (uint32_t i = 0; i < current_rntis.size(); ++i) { uint32_t rnti = current_rntis[i][0]; if (randf() < P_ul_sr) { float exp = ul_sr_exps[0] + randf() * (ul_sr_exps[1] - ul_sr_exps[0]); sim_args.tti_events[tti].users[rnti].sr_data = (uint32_t)pow(10, exp); } if (randf() < P_dl) { float exp = dl_data_exps[0] + randf() * (dl_data_exps[1] - dl_data_exps[0]); sim_args.tti_events[tti].users[rnti].dl_data = (uint32_t)pow(10, exp); } } } // may add new user (For now, we only support one UE per PRACH) bool is_prach_tti = srslte_prach_tti_opportunity_config_fdd(cell_cfg.prach_config, tti, -1); if (is_prach_tti and current_rntis.size() < max_nof_users and randf() < P_prach) { std::vector elem(3); elem[0] = rnti_start; elem[1] = tti; elem[2] = min_conn_dur + rand() % (max_conn_dur - min_conn_dur); current_rntis.push_back(elem); sim_args.tti_events[tti].new_user = true; sim_args.tti_events[tti].new_rnti = rnti_start++; } } return sim_args; } int main(int argc, char* argv[]) { printf("[TESTER] This is the chosen seed: %lu\n", seed); /* initialize random seed: */ srand(seed); uint32_t N_runs = 1, nof_ttis = 10240 + 10; for (uint32_t n = 0; n < N_runs; ++n) { printf("Sim run number: %u\n", n + 1); srsenb::sched_interface::cell_cfg_t cell_cfg = generate_cell_cfg(); sched_sim_args sim_args = rand_sim_params(cell_cfg, nof_ttis); test_scheduler_rand(cell_cfg, sim_args); } // // low UL-Txs // printf("\n\n********* New Test ***********\n"); // sim_args.P_sr = 0.05; // test_scheduler_rand(sim_args); printf("[TESTER] Number of assertion warnings: %u\n", warn_counter); printf("[TESTER] Number of assertion errors: %u\n", err_counter); printf("[TESTER] This was the chosen seed: %lu\n", seed); }