/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include "srslte/common/log_filter.h" #include "srslte/common/logger_stdout.h" #include "srslte/common/threads.h" #include "srslte/upper/rlc_am.h" #include "srslte/common/rlc_pcap.h" #include #define NBUFS 5 #define HAVE_PCAP 0 #define SDU_SIZE 500 using namespace srsue; using namespace srslte; using namespace asn1::rrc; class mac_dummy_timers :public srslte::mac_interface_timers { public: mac_dummy_timers() : timers(8) {} srslte::timers::timer* timer_get(uint32_t timer_id) { return timers.get(timer_id); } void timer_release_id(uint32_t timer_id) { timers.release_id(timer_id); } uint32_t timer_get_unique_id() { return timers.get_unique_id(); } void step_all() { timers.step_all(); } private: srslte::timers timers; }; class rlc_am_tester :public pdcp_interface_rlc ,public rrc_interface_rlc { public: rlc_am_tester(rlc_pcap *pcap_ = NULL) { n_sdus = 0; pcap = pcap_; } // PDCP interface void write_pdu(uint32_t lcid, unique_byte_buffer_t sdu) { assert(lcid == 1); sdus[n_sdus++] = std::move(sdu); } void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {} void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {} void write_pdu_pcch(unique_byte_buffer_t sdu) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} // RRC interface void max_retx_attempted(){} std::string get_rb_name(uint32_t lcid) { return std::string(""); } unique_byte_buffer_t sdus[10]; int n_sdus; rlc_pcap *pcap; }; class ul_writer : public thread { public: ul_writer(rlc_am* rlc_) : rlc(rlc_), running(false) {} ~ul_writer() { stop(); } void stop() { running = false; int cnt=0; while(running && cnt<100) { usleep(10000); cnt++; } wait_thread_finish(); } private: void run_thread() { int sn = 0; running = true; while(running) { byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, "rlc_tester::run_thread", true); if (!pdu) { printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n"); // backoff for a bit usleep(1000); continue; } for (uint32_t i = 0; i < SDU_SIZE; i++) { pdu->msg[i] = sn; } sn++; pdu->N_bytes = SDU_SIZE; rlc->write_sdu(std::move(pdu)); } running = false; } rlc_am* rlc; bool running; }; bool basic_test() { srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(14 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for(int i=0;iN_bytes == 1); assert(*(tester.sdus[i]->msg) == i); } // Check statistics if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) { return -1; } if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) { return -1; } return 0; } bool concat_test() { srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(14 == rlc1.get_buffer_state()); // Read 1 PDUs from RLC1 containing all 5 SDUs byte_buffer_t pdu_buf; len = rlc1.read_pdu(pdu_buf.msg, 13); // 8 bytes for header + payload pdu_buf.N_bytes = len; assert(0 == rlc1.get_buffer_state()); // Write PDU into RLC2 rlc2.write_pdu(pdu_buf.msg, pdu_buf.N_bytes); // No status report as we haven't crossed polling thresholds assert(tester.n_sdus == 5); for(int i=0; iN_bytes == 1); assert(*(tester.sdus[i]->msg) == i); } // check statistics if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) { return -1; } if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) { return -1; } return 0; } bool segment_test(bool in_seq_rx) { srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read PDUs from RLC1 (force segmentation) byte_buffer_t pdu_bufs[20]; int n_pdus = 0; while(rlc1.get_buffer_state() > 0){ len = rlc1.read_pdu(pdu_bufs[n_pdus].msg, 10); // 2 header + payload pdu_bufs[n_pdus++].N_bytes = len; } assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 if (in_seq_rx) { // deliver PDUs in order for (int i = 0; i < n_pdus; ++i) { rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } } else { // deliver PDUs in reverse order for (int i = n_pdus - 1; i >= 0; --i) { rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } } // Receiver will only generate status PDU if they arrive in order // If SN=7 arrives first, but the Rx expects SN=0, status reporting will be delayed, see TS 36.322 v10 Section 5.2.3 if (in_seq_rx) { assert(2 == rlc2.get_buffer_state()); // Read status PDU from RLC2 byte_buffer_t status_buf; len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status status_buf.N_bytes = len; // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); } assert(0 == rlc2.get_buffer_state()); assert(tester.n_sdus == 5); for(int i=0; iN_bytes == 10); for(int j=0;j<10;j++) assert(tester.sdus[i]->msg[j] == j); } if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) { return -1; } if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) { return -1; } return 0; } bool retx_test() { srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(14 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for(int i=0;iN_bytes != 1) return -1; if (*(tester.sdus[i]->msg) != i) return -1; } return 0; } bool resegment_test_1() { // SDUs: | 10 | 10 | 10 | 10 | 10 | // PDUs: | 10 | 10 | 10 | 10 | 10 | // Retx PDU segments: | 5 | 5| srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (10 bytes each) byte_buffer_t pdu_bufs[NBUFS]; for(int i=0;iN_bytes != 10) return -1; for(int j=0;j<10;j++) if (tester.sdus[i]->msg[j] != j) return -1; } return 0; } bool resegment_test_2() { // SDUs: | 10 | 10 | 10 | 10 | 10 | // PDUs: | 5 | 10 | 20 | 10 | 5 | // Retx PDU segments: | 10 | 10 | srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (5 bytes, 10 bytes, 20 bytes, 10 bytes, 5 bytes) byte_buffer_t pdu_bufs[NBUFS]; pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 14); // 4 byte header + 10 byte payload pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 25); // 5 byte header + 20 byte payload pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 14); // 4 byte header + 10 byte payload pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 (skip SN 2) for(int i=0;iN_bytes != 10) return -1; for(int j=0;j<10;j++) if (tester.sdus[i]->msg[j] != j) return -1; } return 0; } bool resegment_test_3() { // SDUs: | 10 | 10 | 10 | 10 | 10 | // PDUs: | 5 | 5| 20 | 10 | 10 | // Retx PDU segments: | 10 | 10 | srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 20 bytes, 10 bytes, 10 bytes) byte_buffer_t pdu_bufs[NBUFS]; pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 24); // 4 byte header + 20 byte payload pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 12); // 2 byte header + 10 byte payload pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 12); // 2 byte header + 10 byte payload assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 (skip SN 2) for(int i=0;iN_bytes != 10) return -1; for(int j=0;j<10;j++) if (tester.sdus[i]->msg[j] != j) return -1; } return 0; } bool resegment_test_4() { // SDUs: | 10 | 10 | 10 | 10 | 10 | // PDUs: | 5 | 5| 30 | 5 | 5| // Retx PDU segments: | 15 | 15 | srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 30 bytes, 5 bytes, 5 bytes) byte_buffer_t pdu_bufs[NBUFS]; pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 35); // 5 byte header + 30 byte payload pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 7); // 2 byte header + 5 byte payload pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 (skip SN 2) for(int i=0;iN_bytes != 10) return -1; for(int j=0;j<10;j++) if (tester.sdus[i]->msg[j] != j) return -1; } return 0; } bool resegment_test_5() { // SDUs: | 10 | 10 | 10 | 10 | 10 | // PDUs: |2|3| 40 |3|2| // Retx PDU segments: | 20 | 20 | srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[NBUFS]; for(int i=0;imsg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(59 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes) byte_buffer_t pdu_bufs[NBUFS]; pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 4); // 2 byte header + 2 byte payload pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 5); // 2 byte header + 3 byte payload pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 48); // 8 byte header + 40 byte payload pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 5); // 2 byte header + 3 byte payload pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 4); // 2 byte header + 2 byte payload assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 (skip SN 2) for(int i=0;iN_bytes != 10) return -1; for(int j=0;j<10;j++) if (tester.sdus[i]->msg[j] != j) return -1; } return 0; } bool resegment_test_6() { // SDUs: |10|10|10| 54 | 54 | 54 | 54 | 54 | 54 | // PDUs: |10|10|10| 270 | 54 | // Retx PDU segments: | 120 | 150 | srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[9]; for(int i=0;i<3;i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for(int j=0;j<10;j++) sdu_bufs[i]->msg[j] = j; sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } for(int i=3;i<9;i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for(int j=0;j<54;j++) sdu_bufs[i]->msg[j] = j; sdu_bufs[i]->N_bytes = 54; rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(369 == rlc1.get_buffer_state()); // Read PDUs from RLC1 (10, 10, 10, 270, 54) byte_buffer_t pdu_bufs[5]; for(int i=0;i<3;i++) { len = rlc1.read_pdu(pdu_bufs[i].msg, 12); pdu_bufs[i].N_bytes = len; } len = rlc1.read_pdu(pdu_bufs[3].msg, 278); pdu_bufs[3].N_bytes = len; len = rlc1.read_pdu(pdu_bufs[4].msg, 56); pdu_bufs[4].N_bytes = len; assert(0 == rlc1.get_buffer_state()); // Write PDUs into RLC2 (skip SN 3) for(int i=0;i<5;i++) { if(i != 3) rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); } // Step timers until reordering timeout expires int cnt = 5; while (cnt--) { timers.step_all(); } assert(4 == rlc2.get_buffer_state()); // Read status PDU from RLC2 byte_buffer_t status_buf; len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status status_buf.N_bytes = len; // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); assert(278 == rlc1.get_buffer_state()); // Read the retx PDU from RLC1 and force resegmentation byte_buffer_t retx1; len = rlc1.read_pdu(retx1.msg, 129); retx1.N_bytes = len; // Write the retx PDU to RLC2 rlc2.write_pdu(retx1.msg, retx1.N_bytes); assert(159 == rlc1.get_buffer_state()); // Read the remaining segment byte_buffer_t retx2; len = rlc1.read_pdu(retx2.msg, 162); retx2.N_bytes = len; // Write the retx PDU to RLC2 rlc2.write_pdu(retx2.msg, retx2.N_bytes); assert(tester.n_sdus == 9); for(int i=0;i<3;i++) { assert(tester.sdus[i]->N_bytes == 10); for(int j=0;j<10;j++) assert(tester.sdus[i]->msg[j] == j); } for(int i=3;i<9;i++) { if (i >= tester.n_sdus) return -1; if(tester.sdus[i]->N_bytes != 54) return -1; for(int j=0;j<54;j++) { if (tester.sdus[i]->msg[j] != j) return -1; } } return 0; } // Retransmission of PDU segments of the same size bool resegment_test_7() { // SDUs: | 30 | 30 | // PDUs: | 13 | 13 | 11 | 13 | 10 | // Rxed PDUs | 13 | 13 | | 13 | 10 | // Retx PDU segments: | 4 | 7 | // Retx PDU segments: |3|3]3|2| const uint32_t N_SDU_BUFS = 2; const uint32_t N_PDU_BUFS = 5; const uint32_t sdu_size = 30; srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(100); log2.set_hex_limit(100); #if HAVE_PCAP rlc_pcap pcap; pcap.open("rlc_am_test7.pcap", 0); rlc_am_tester tester(&pcap); #else rlc_am_tester tester(NULL); #endif mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 2 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[N_SDU_BUFS]; for(uint32_t i=0;imsg[j] = i; } sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(65 == rlc1.get_buffer_state()); // Read PDUs from RLC1 (15 bytes each) byte_buffer_t pdu_bufs[N_PDU_BUFS]; for(uint32_t i=0;i 1) { rlc2.write_pdu(retx[i].msg, retx[i].N_bytes); #if HAVE_PCAP pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes); #endif } } // Read status PDU from RLC2 assert(rlc2.get_buffer_state()); byte_buffer_t status_buf; status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); #if HAVE_PCAP pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes); #endif assert(15 == rlc1.get_buffer_state()); // second round of retx, forcing resegmentation byte_buffer_t retx2[4]; for (uint32_t i = 0; i < 4; i++) { assert(rlc1.get_buffer_state() != 0); retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9); assert(retx2[i].N_bytes != 0); rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes); #if HAVE_PCAP pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes); #endif } // check buffer states assert(0 == rlc1.get_buffer_state()); // Step timers until poll_retx timeout expires cnt = 5; while (cnt--) { timers.step_all(); } // Read status PDU from RLC2 assert(rlc2.get_buffer_state()); status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); #if HAVE_PCAP pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes); #endif // check status again assert(0 == rlc1.get_buffer_state()); assert(0 == rlc2.get_buffer_state()); // Check number of SDUs and their content assert(tester.n_sdus == N_SDU_BUFS); for(int i=0; iN_bytes != sdu_size) return -1; for(uint32_t j=0;jmsg[j] != i) return -1; } } #if HAVE_PCAP pcap.close(); #endif return 0; } // Retransmission of PDU segments with different size bool resegment_test_8() { // SDUs: | 30 | 30 | // PDUs: | 15 | 15 | 15 | 15 | 15 | // Rxed PDUs | 15 | | 15 | 15 | // Retx PDU segments: | 7 | 7 | 7 | 7 | // Retx PDU segments: | 6 | 6 ] 6 | 6 | 6 | 6 | 6 | 6 | const uint32_t N_SDU_BUFS = 2; const uint32_t N_PDU_BUFS = 5; const uint32_t sdu_size = 30; srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(100); log2.set_hex_limit(100); #if HAVE_PCAP rlc_pcap pcap; pcap.open("rlc_am_test8.pcap", 0); rlc_am_tester tester(&pcap); #else rlc_am_tester tester(NULL); #endif mac_dummy_timers timers; rlc_am rlc1; rlc_am rlc2; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc2.init(&log2, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } if (not rlc2.configure(&cnfg)) { return -1; } // Push 2 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[N_SDU_BUFS]; for(uint32_t i=0;imsg[j] = i; } sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes rlc1.write_sdu(std::move(sdu_bufs[i])); } assert(65 == rlc1.get_buffer_state()); // Read PDUs from RLC1 (15 bytes each) byte_buffer_t pdu_bufs[N_PDU_BUFS]; for(uint32_t i=0;i 2) { rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); #if HAVE_PCAP pcap.write_dl_am_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); #endif } } // Step timers until reordering timeout expires int cnt = 5; while (cnt--) { timers.step_all(); } // what PDU to retransmit is random but it must not be zero assert(0 != rlc1.get_buffer_state()); // first round of retx, forcing resegmentation byte_buffer_t retx[4]; for (uint32_t i = 0; i < 3; i++) { assert(rlc1.get_buffer_state()); retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 8); assert(retx[i].N_bytes); // Write the last two segments to RLC2 if (i > 1) { rlc2.write_pdu(retx[i].msg, retx[i].N_bytes); #if HAVE_PCAP pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes); #endif } } // Step timers until reordering timeout expires cnt = 7; while (cnt--) { timers.step_all(); } // Read status PDU from RLC2 assert(rlc2.get_buffer_state()); byte_buffer_t status_buf; status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); #if HAVE_PCAP pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes); #endif assert(15 == rlc1.get_buffer_state()); // second round of retx, reduce grant size to force different segment sizes byte_buffer_t retx2[20]; for (uint32_t i = 0; i < 7; i++) { assert(rlc1.get_buffer_state() != 0); retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9); assert(retx2[i].N_bytes != 0); rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes); #if HAVE_PCAP pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes); #endif } // get BSR from RLC2 status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status // Write status PDU to RLC1 rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); #if HAVE_PCAP pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes); #endif // check buffer states if (rlc1.get_buffer_state() != 0) { return -1; }; if (rlc2.get_buffer_state() != 0) { return -1; }; // Check number of SDUs and their content assert(tester.n_sdus == N_SDU_BUFS); for(int i=0; iN_bytes != sdu_size) return -1; for(uint32_t j=0;jmsg[j] != i) return -1; } } #if HAVE_PCAP pcap.close(); #endif return 0; } bool reset_test() { srslte::log_filter log1("RLC_AM_1"); srslte::log_filter log2("RLC_AM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } // Push 1 SDU of size 10 into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_buf = srslte::allocate_unique_buffer(*pool, true); sdu_buf->msg[0] = 1; // Write the index into the buffer sdu_buf->N_bytes = 100; rlc1.write_sdu(std::move(sdu_buf)); // read 1 PDU from RLC1 and force segmentation byte_buffer_t pdu_bufs; len = rlc1.read_pdu(pdu_bufs.msg, 4); pdu_bufs.N_bytes = len; // reset RLC1 rlc1.stop(); // read another PDU segment from RLC1 len = rlc1.read_pdu(pdu_bufs.msg, 4); pdu_bufs.N_bytes = len; // now empty RLC buffer len = rlc1.read_pdu(pdu_bufs.msg, 100); pdu_bufs.N_bytes = len; if (0 != rlc1.get_buffer_state()) { return -1; } return 0; } bool stop_test() { srslte::log_filter log1("RLC_AM_1"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); rlc_am_tester tester; mac_dummy_timers timers; rlc_am rlc1; log1.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 1, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::am); cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5; cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5; cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4; cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25; cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4; cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5; if (not rlc1.configure(&cnfg)) { return -1; } // start thread reading ul_writer writer(&rlc1); writer.start(-2); // let writer thread block on tx_queue usleep(1e6); // stop RLC1 rlc1.stop(); return 0; } int main(int argc, char **argv) { if (basic_test()) { printf("basic_test failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (concat_test()) { printf("concat_test failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (segment_test(true)) { printf("segment_test with in-order PDU reception failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (segment_test(false)) { printf("segment_test with out-of-order PDU reception failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (retx_test()) { printf("retx_test failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_1()) { printf("resegment_test_1 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_2()) { printf("resegment_test_2 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_3()) { printf("resegment_test_3 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_4()) { printf("resegment_test_4 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_5()) { printf("resegment_test_5 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_6()) { printf("resegment_test_6 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_7()) { printf("resegment_test_7 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (resegment_test_8()) { printf("resegment_test_8 failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (reset_test()) { printf("reset_test failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); if (stop_test()) { printf("stop_test failed\n"); exit(-1); }; byte_buffer_pool::get_instance()->cleanup(); }