this patch refactors the SDU queuing and dropping policy of the RLC and PDCP layer.
the previous design had issues when packets have been generated at a higher
rate above the PDCP than they could be consumed below the RLC.
When the RLC SDU queues were full, we allowed two policies, one to block on the write
and the other to drop the SDU. Both options are not ideal because they either
lead to a blocking stack thread or to lost PDCP PDUs.
To avoid this, this patch makes the following changes:
* PDCP monitors RLC's SDU queue and drops packets on its north-bound SAP if queues are full
* a new method sdu_queue_is_full() has been added to the RLC interface for PDCP
* remove blocking write from pdcp and rlc write_sdu() interface
* all writes into queues need to be non-blocking
* if Tx queues are overflowing, SDUs are dropped above PDCP, not RLC
* log warning if RLC still needs to drop SDUs
* this case should be avoided with the monitoring mechanism
extend GW-NAS interface to signal test mode activation.
The method is a noop in the normal GW but is implemented in
the TTCN3 DUT according to TS 36.509 for Mode B
this is to better differentiate from "send_attach_request" that
only packs and send the actual attach request message. The
entire attach procedure may include PLMN search, etc.
* Clang-formated UE, eNB and lib.
* Fixed compiling errors from clang-format.
* Fix linking issues introduced by clang-format
* Fix poor formating in initializing arrays of arrays.
* Fix mistake in conflict resolution on rm_turbo.c
* Re-apply clang format to gtpc_ies.h
move non-type-specific methods of proc_t to its base class.
procedure state machine was simplified via a future-type. Now procedures dont get stuck until the user reads the procedure outcome.
made the NAS procedures more event trigger/reaction-based.
this fixes the issue when the stack is torn down if, for example,
the radio couldn't be loaded correctly. it will hence call stop() on all stack
components which are not initialzized yet, and logging therefore doesn't work.
the log object is know during contruction time and therefore can be passed
in as soon as possible.
- add interface to RRC to allow NAS to query the DRB for a given
EPS bearer id
- extend interface for NAS to setup GW to also pass LCID of bearer
- in NAS, use this new interface to pass actual LCID of the default
DRB when creating the TUN device
- abstract UE object now consists of a radio, a PHY, and a stack layer
- add new stack abstraction layer that combines MAC, RLC, RRC, PDCP, NAS and GW
- PHY layer now has a single stack interface and does not talk to MAC and RRC seperatly