it fixes#1623.
this happens more often with MIMO since lates are more likely here.
after a late, the Rx stream must not be stopped on the B2xx either.
<log>
RF status: O=3, U=0, L=1
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1209: Error timed out while receiving samples from UHD.
stop rx stream
./home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1209: Error timed out while receiving samples from UHD.
stop rx stream
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_sync.c.775: Error receiving samples
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_cell_search.c.312: Error calling srslte_ue_sync_work()
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_cell_search.c.272: Error searching cell
</log>
before the BSR was extracted but the actual index (between 0 and 63)
was not stored but directly converted into bytes.
for log parsing and debugging it is easier to follow the index
value. this patch therefore adds both values to the log message
and extends the API accordingly.
commit #51c6e8d1 introduced a regression in which the 2nd antenna
port was never considered. All MIMO ZMQ based tests therefore failed.
this fixes#1608
the enable_rx_timestamps() for the radio_ctrl object has only been
introduced in Nov 2019 for UHD 3.15 and therefore needs
to be excluded when compiling for 3.14 and below.
Note: According to the original UHD commit in
67dbaa41f2 (diff-60a9387c0fc8406fd5b39fa995dd8c14)
it looks like the Rx timestamps are disabled by default
for UHD versions before 3.15
This commit fixes#1602
- Import the srslog project into srslte.
- Ported srsue app to use the new logging framework.
- Implemented a wrapper that dispatches log entries to srslog.
- Renamed an existing log test to be more specific to avoid name clashes.
at the when applying the fading channel we copied the state back
to our buffer. Since we are offsetting the read buffer
by X samples, we need to make sure that we don't read after then
(len-X) samples of the temporary memory buffer
the PSS detection needs more temporary buffer than a full subframe.
we therefore need to allocate and initialize the sync object with
larger maximum size to support Scell search of large cells, e.g.
20 MHz
this fixes issue #1538
* add locked and unlocked version of has_data() since one is
called from stack and one from PHY threads
* add comments in each interface section as to why locking
is required or not
* remove RLC rwlock when not required
* move calls only used by RRC to RRC section
this patch refactors the SDU queuing and dropping policy of the RLC and PDCP layer.
the previous design had issues when packets have been generated at a higher
rate above the PDCP than they could be consumed below the RLC.
When the RLC SDU queues were full, we allowed two policies, one to block on the write
and the other to drop the SDU. Both options are not ideal because they either
lead to a blocking stack thread or to lost PDCP PDUs.
To avoid this, this patch makes the following changes:
* PDCP monitors RLC's SDU queue and drops packets on its north-bound SAP if queues are full
* a new method sdu_queue_is_full() has been added to the RLC interface for PDCP
* remove blocking write from pdcp and rlc write_sdu() interface
* all writes into queues need to be non-blocking
* if Tx queues are overflowing, SDUs are dropped above PDCP, not RLC
* log warning if RLC still needs to drop SDUs
* this case should be avoided with the monitoring mechanism
with ZMQ RF, we've seen the radio returning -1 and traced
the issue down to the ringbuffer.
in fact, pthread_cond_timedwait() returned 22 (EINVAL) indicating
a wrong timeout value. The issue was likely an overflow
in the timespec parameter. This patch checks for the return
value of pthread_cond_timedwait() and also calculates the
nanosecond wrap around for the timespec
amarisoft flags an RF error and exits after not receiving samples
for the radio. Running with ZMQ in the RFCI, the UE sometimes needs more
time to start up due to slow processing and no fftw wisdom file and
then Amarisoft eNB times out. This gives the whole process a little
bit more time. Should we still find it too short we may increase
it further.
This lock was removed in 1cbf7eac because it was considered unneeded.
However, as can be seen in issue #1503, we need to protect the access
to rx_window, for example.
Issue #1503 shows a stack trace where a PHY worker generates a status PDU.
While holding the mutex to access rx_window, the stack thread on the
other hand, happily accesses the rx_window member without acquiring
the lock. This commit protects all handle_*() functions in write_pdu().
This reverts commit 1cbf7eac04.
instead of logging PDU received from below, and SDU that is forwarded
to above, only log the PDU in rx in info mode.
The next layer will do the same and log the PDU received (which is the SDU coming from here)
so there is now loss of information in the logs.
during the PDU packing it could happen that a new SDU segment
was added but the resulting larger header was so big that not even
a single byte of the new PDU could be added. because this
corner case wasn't handled correctly an invalid PDU was transmitted.
the solution is to revert the addition of the new SDU.