building on the previous refactor this patch now adds support
for peridoic BSR reporting (using short BSR). It furthermore does
the following changes:
* add BSR packing
* add proc_bsr_nr unit test
* move mac_nr test code into test folder under src (needs to be done with other test code too)
* refactor some common methods to mac_common.cc
* add common mux_base class
* move UL PDU generation to mux class
* add logical channel registration to MAC, MUX, BSR
* add initial proc BSR
* add basic MAC NR test
* rework MAC interfaces
* Replaced UE logger in the ue class.
* Replaced loggers in the main phy class and prach.
* Replaced loggers in phy common and ta_control.
* Replace loggers in cc and sf workers.
* Replaced loggers in intra_measure, scell_recv, search, sfn_sync, sync.
* Remove last uses of the old loggers in the main phy class.
* Remove stray newline in logs.
* Replaced loggers in ue gw.
* - Started to replace loggers in the ue stack.
- Replaced loggers in usim and pcsc.
- Adapted nas and usim tests.
* Replace loggers in nas.
* Added missing log init calls in two previously modified tests.
* Replaced logger in nas idle procs.
* Replaced loggers in nas emm state.
* Replaced loggers in tft packet filter and adapted tft test.
* Replaced loggers in main RRC class.
* Replaced loggers in RRC cell.
* Replaced loggers in RRC meas.
* Replaced loggers in rrc procedures.
* Started logger replacement in MAC layer, more precisely in demux and dl_harq classes.
Been unable to inject loggers in construction for dl_tb_process due to very weird static assertions in the std::vector code being the type not constructible which is not true, so instead use the main MAC logger directly.
* Replaced loggers in mac mux class.
* Replaced loggers in mac pro_bsr.
* Replaced loggers in mac proc phr.
* Replaced loggers in mac proc SR and RA.
* Replace loggers in mac UL HARQ.
* Replaced loggers in main ue stack class.
* Fixed nas test crashing due to a null string.
* Ported mac_test to use the new loggers.
* Removed TTI reporting for the PHY log as the old logger did.
* Replaced loggers in UE phy tests.
* Configure loggers in nas_test.
* Replaced loggers in rrc_meas_test.
* Replaced loggers in rrc_reconfig_test.
* Added missing newline in tft_test.
* Fix compilation errors in TTCN3 tests.
* Fix linker error detected in CI and warning.
* Replaced loggers in TTCN3 tests.
* Fix a text replace error in some log messages.
* Remove trailing newlines from log entries.
* Remove old logger from rrc.
* Flush backend before printing the test status.
* - Fix compilation error from previous rebase.
- Remove trailing newlines from some missing log entries.
fix for #1934
This fixes a race condition between Stack thread and DL
PDU processing that lead to updates of the RLC buffer that
are undetected by the BSR routine.
What happens is that in a UL SCH PDU all outstanding data is transmitted
and and a LBSR with all zero buffers is sent.
14:39:47.327301 [MAC ] [D] [ 3793] BSR: LCID=3 old_buffer=59
14:39:47.330600 [MAC ] [I] [ 3793] UL LCID=3 len=58 LBSR: b=0 0 0 0
Note that "old_buffer" isn't set to zero here.
At the same time (same TTI), the MAC PDU processing thread handles DL-SCH PDUs
that may generate new UL PDUs:
14:39:47.330749 [RLC ] [I] DRB1 Tx SDU (54 B, tx_sdu_queue_len=1)
14:39:47.330762 [RLC ] [I] DRB1 Tx SDU (54 B, tx_sdu_queue_len=2)
14:39:47.330775 [RLC ] [I] DRB1 Tx SDU (54 B, tx_sdu_queue_len=3)
..
Those PDUs are "new data" since the previous buffer state was zero.
Here is the race now between the threads, at the end of the bsr::step() function
old_buffer of each LCG is updated with the previous new_buffer, so
the buffer state of LCG=2 is now 59.
Now MAC starts the next TTI:
14:39:47.331910 [MAC ] [D] [ 3794] Running MAC tti=3794
14:39:47.331928 [MAC ] [D] [ 3794] Update Bj: lcid=0, Bj=0
14:39:47.331934 [MAC ] [D] [ 3794] Update Bj: lcid=1, Bj=0
14:39:47.331938 [MAC ] [D] [ 3794] Update Bj: lcid=2, Bj=0
14:39:47.331941 [MAC ] [D] [ 3794] Update Bj: lcid=3, Bj=-1752
14:39:47.331951 [MAC ] [D] [ 3794] BSR: LCID=0 update new buffer=0
14:39:47.331960 [MAC ] [D] [ 3794] BSR: LCID=1 update new buffer=0
14:39:47.331964 [MAC ] [D] [ 3794] BSR: LCID=2 update new buffer=0
14:39:47.331971 [MAC ] [D] [ 3794] BSR: LCID=3 update new buffer=335
14:39:47.331976 [MAC ] [D] [ 3794] BSR: check_new_data() -> get_buffer_state_lcg(0)=0
14:39:47.331980 [MAC ] [D] [ 3794] BSR: check_new_data() -> get_buffer_state_lcg(1)=0
14:39:47.331984 [MAC ] [D] [ 3794] BSR: check_new_data() -> get_buffer_state_lcg(2)=59
14:39:47.331988 [MAC ] [D] [ 3794] BSR: check_new_data() -> get_buffer_state_lcg(3)=0
14:39:47.331993 [MAC ] [D] [ 3794] BSR: LCID=0 old_buffer=0
14:39:47.332000 [MAC ] [D] [ 3794] BSR: LCID=1 old_buffer=0
14:39:47.332003 [MAC ] [D] [ 3794] BSR: LCID=2 old_buffer=0
14:39:47.332007 [MAC ] [D] [ 3794] BSR: LCID=3 old_buffer=335
And since the buffer state of LCG=2 isn't zero, the new data for LCID=3 of that LCG is considered.
So effectivly, the BSR missed the "empty" buffer state for a fraction of time and doesn't
consider the outgoing data generated in the same TTI as new. It therefore
doesn't transmit a BSR.
in which a BSR wasn't
this patch fixes the UL BSR as per TS 36.321, it includes following
main changes:
* report UL buffer state to reflect the UEs transmit buffer after
the MAC UL PDU containing the BSR has been built.
In other words, if the UE, for example, can transmit all outstanding
data in an UL grant, it will not report any pending data to transmit.
* refactor MUX routines and subheader space calculation
* Clang-formated UE, eNB and lib.
* Fixed compiling errors from clang-format.
* Fix linking issues introduced by clang-format
* Fix poor formating in initializing arrays of arrays.
* Fix mistake in conflict resolution on rm_turbo.c
* Re-apply clang format to gtpc_ies.h
RRC-PHY interface refactor. Moved RRC-MAC interface to rrc_asn1_utils and created RRC-PHY interface also in rrc_asn1_utils. All ASN1 includes should be made from rrc_asn1_utils only keeping ue_interfaces clean of ASN1
Tested with different common and dedicated configurations (64QAM UL, 256QAM, CA, SRS enabled/disabled, etc)
- abstract UE object now consists of a radio, a PHY, and a stack layer
- add new stack abstraction layer that combines MAC, RLC, RRC, PDCP, NAS and GW
- PHY layer now has a single stack interface and does not talk to MAC and RRC seperatly