* Take into account CRS from neigbhour cells when measuring interference
* fix std::isnormal compilation
* Fixed compilation of test
* Address comments
* Remove unused overrides
* Make PHY non-blocking and fefactor HO procedure
* makes entire PHY non-blocking through command interface
* adds dedicated queue for cell_search/cell_select commands
* refactor HO procedure to run faster, in one stack cycle. Looks closer to the specs
* force ue to always apply SIB2 configuration during reestablishment
* Run update_measurements in all workers
Co-authored-by: Ismael Gomez <ismagom@gmail.com>
* Removed magic numbers.
* Reduced indentation of statements with early exists.
* Removed elses after a return statement.
* Trimmed unnecessary include files.
* Default initialized members in the class.
the PSS detection needs more temporary buffer than a full subframe.
we therefore need to allocate and initialize the sync object with
larger maximum size to support Scell search of large cells, e.g.
20 MHz
this fixes issue #1538
The current TTI gap calculation assumes strict continuity
of radio time stamps, even when retuning, changing sample rate, etc.
This is certainly desireble but not necessaritly the case and may cause
issues when negative time gaps or too large gaps are detected and reported
to the stack.
this patch makes the assumption that valid TTI jumps are between 1ms
and 1s and that larger gaps are the result of screwed time-stamps
or too long radio operations.
* Use task id to track old background tasks in RA procedure
* Improve robustness against RF overflow in PHY
* Increase SNR out-of-sync threshold
* Do not change frequency if it's the same
* Increase sync priority
* Increase time to start receiving to reduce input buffer occupation
* Use scoped lock in sf_worker
this patch adds a buffer len paramter to the receive_samples() call
that protects the (also) provided buffer from overflowing.
currently each call to srslte_ue_sync_zerocopy() which then calls receive_samples()
relies on a buffer that is "big enough". But that buffer is sometimes
2 subframes, sometimes 3 or 5, sometimes has space for the maximum PRB size, sometimes
only for 6 PRBs (i.e. during cell search).
By extending the interface to pass the buffer size we can make sure that
only samples are received that actually fit inside the provided buffer.