First ZUC working test case

master
David Rupprecht 6 years ago committed by Andre Puschmann
parent 8da610d68b
commit ef4cf7aa52

@ -38,6 +38,7 @@
#include "srslte/asn1/liblte_common.h"
/*******************************************************************************
DEFINES
*******************************************************************************/
@ -103,6 +104,7 @@ typedef enum {
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_EEA0 = 0,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_128_EEA1,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_128_EEA2,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_128_EEA3,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_N_ITEMS,
} LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_ENUM;
static const char liblte_security_ciphering_algorithm_id_text[LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_N_ITEMS][20] = {
@ -111,6 +113,7 @@ typedef enum {
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_EIA0 = 0,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_128_EIA1,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_128_EIA2,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_128_EIA3,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_N_ITEMS,
} LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_ENUM;
static const char liblte_security_integrity_algorithm_id_text[LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_N_ITEMS][20] = {
@ -224,6 +227,13 @@ LIBLTE_ERROR_ENUM liblte_security_encryption_eea2(
LIBLTE_ERROR_ENUM liblte_security_decryption_eea2(
uint8* key, uint32 count, uint8 bearer, uint8 direction, uint8* ct, uint32 ct_len, uint8* out);
LIBLTE_ERROR_ENUM liblte_security_encryption_eea3(uint8 *key,
uint32 count,
uint8 bearer,
uint8 direction,
uint8 *msg,
uint32 msg_len,
uint8 *out);
/*********************************************************************
Name: liblte_security_milenage_f1

@ -0,0 +1,39 @@
#ifndef SRSLTE_ZUC_H
#define SRSLTE_ZUC_H
typedef unsigned char u8;
typedef unsigned int u32;
/* the state registers of LFSR */
typedef struct {
u32 LFSR_S0;
u32 LFSR_S1;
u32 LFSR_S2;
u32 LFSR_S3;
u32 LFSR_S4;
u32 LFSR_S5;
u32 LFSR_S6;
u32 LFSR_S7;
u32 LFSR_S8;
u32 LFSR_S9;
u32 LFSR_S10;
u32 LFSR_S11;
u32 LFSR_S12;
u32 LFSR_S13;
u32 LFSR_S14;
u32 LFSR_S15;
/* the registers of F */
u32 F_R1;
u32 F_R2;
/* the outputs of BitReorganization */
u32 BRC_X0;
u32 BRC_X1;
u32 BRC_X2;
u32 BRC_X3;
} zuc_state_t;
void zuc_initialize(u8* k, u8* iv);
void zuc_generate_keystream(int KeystreamLen, u32* pKeystream);
// void zu_deinitialze(zuc_state_t* zuc_state);
#endif // SRSLTE_ZUC_H

@ -35,6 +35,7 @@
*******************************************************************************/
#include "srslte/common/liblte_security.h"
#include "srslte/common/zuc.h"
#include "math.h"
#include "srslte/common/liblte_ssl.h"
@ -951,6 +952,104 @@ LIBLTE_ERROR_ENUM liblte_security_decryption_eea2(
return liblte_security_encryption_eea2(key, count, bearer, direction, ct, ct_len, out);
}
/*********************************************************************
Name: liblte_security_encryption_eea1
Description: 128-bit encryption algorithm EEA1.
Document Reference: 33.401 v13.1.0 Annex B.1.2
35.215 v13.0.0 References
Specification of the 3GPP Confidentiality and
Integrity Algorithms UEA2 & UIA2 D1 v2.1
*********************************************************************/
LIBLTE_ERROR_ENUM liblte_security_encryption_eea3(uint8 *key,
uint32 count,
uint8 bearer,
uint8 direction,
uint8 *msg,
uint32 msg_len,
uint8 *out)
{
LIBLTE_ERROR_ENUM err = LIBLTE_ERROR_INVALID_INPUTS;
S3G_STATE state, *state_ptr;
uint32 k[] = {0,0,0,0};
uint32 iv[] = {0,0,0,0};
uint32 *ks;
int32 i;
uint32 msg_len_block_8, msg_len_block_32, m;
if (key != NULL &&
msg != NULL &&
out != NULL)
{
state_ptr = &state;
msg_len_block_8 = (msg_len + 7) / 8;
msg_len_block_32 = (msg_len + 31) / 32;
// Transform key
for (i = 3; i >= 0; i--) {
k[i] = (key[4 * (3 - i) + 0] << 24) |
(key[4 * (3 - i) + 1] << 16) |
(key[4 * (3 - i) + 2] << 8) |
(key[4 * (3 - i) + 3]);
}
// Construct iv
uint8_t iv[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
iv[0] = (count >> 24) & 0xFF;
iv[1] = (count >> 16) & 0xFF;
iv[2] = (count >> 8) & 0xFF;
iv[3] = (count)&0xFF;
iv[4] = ((bearer & 0x1F) << 3) | ((direction & 0x01) << 2);
iv[5] = 0;
iv[6] = 0;
iv[7] = 0;
iv[8] = iv[0];
iv[9] = iv[1];
iv[10] = iv[2];
iv[11] = iv[3];
iv[12] = iv[4];
iv[13] = iv[5];
iv[14] = iv[6];
iv[15] = iv[7];
// Initialize keystream
zuc_initialize(key, iv);
// Generate keystream
ks = (uint32 *) calloc(msg_len_block_32, sizeof(uint32));
zuc_generate_keystream(msg_len_block_32, ks);
// Generate output except last block
for (i = 0; i < (int32_t)msg_len_block_32 - 1; i++) {
out[4 * i + 0] = msg[4 * i + 0] ^ ((ks[i] >> 24) & 0xFF);
out[4 * i + 1] = msg[4 * i + 1] ^ ((ks[i] >> 16) & 0xFF);
out[4 * i + 2] = msg[4 * i + 2] ^ ((ks[i] >> 8) & 0xFF);
out[4 * i + 3] = msg[4 * i + 3] ^ ((ks[i] & 0xFF));
}
// Process last bytes
for (i = (msg_len_block_32 - 1) * 4; i < (int32_t)msg_len_block_8; i++) {
out[i] = msg[i] ^ ((ks[i / 4] >> ((3 - (i % 4)) * 8)) & 0xFF);
}
// Zero tailing bits
zero_tailing_bits(out, msg_len);
// Clean up
free(ks);
// zuc_deinitialize(state_ptr);
err = LIBLTE_SUCCESS;
}
return(err);
}
/*********************************************************************
Name: liblte_security_milenage_f1
@ -1680,3 +1779,6 @@ void s3g_generate_keystream(S3G_STATE* state, uint32 n, uint32* ks)
s3g_clock_lfsr(state, 0x0);
}
}

@ -0,0 +1,223 @@
#include "srslte/common/zuc.h"
/* ——————————————————————- */
/* the state registers of LFSR */
u32 ZUC_LFSR_S0 = 0x00;
u32 ZUC_LFSR_S1 = 0x00;
u32 ZUC_LFSR_S2 = 0x00;
u32 ZUC_LFSR_S3 = 0x00;
u32 ZUC_LFSR_S4 = 0x00;
u32 ZUC_LFSR_S5 = 0x00;
u32 ZUC_LFSR_S6 = 0x00;
u32 ZUC_LFSR_S7 = 0x00;
u32 ZUC_LFSR_S8 = 0x00;
u32 ZUC_LFSR_S9 = 0x00;
u32 ZUC_LFSR_S10 = 0x00;
u32 ZUC_LFSR_S11 = 0x00;
u32 ZUC_LFSR_S12 = 0x00;
u32 ZUC_LFSR_S13 = 0x00;
u32 ZUC_LFSR_S14 = 0x00;
u32 ZUC_LFSR_S15 = 0x00; /* the registers of F */
u32 F_R1 = 0x00;
u32 F_R2 = 0x00;/* the outputs of BitReorganization */
u32 BRC_X0 = 0x00;
u32 BRC_X1 = 0x00;
u32 BRC_X2 = 0x00;
u32 BRC_X3 = 0x00;
#define MAKEU32(a, b, c, d) (((u32)(a) << 24) | ((u32)(b) << 16) | ((u32)(c) << 8) | ((u32)(d)))
#define MulByPow2(x, k) ((((x) << k) | ((x) >> (31 - k))) & 0x7FFFFFFF)
#define MAKEU31(a, b, c) (((u32)(a) << 23) | ((u32)(b) << 8) | (u32)(c))
#define ROT(a, k) (((a) << k) | ((a) >> (32 - k)))
/* the s-boxes */
u8 S0[256] = {
0x3e, 0x72, 0x5b, 0x47, 0xca, 0xe0, 0x00, 0x33, 0x04, 0xd1, 0x54, 0x98, 0x09, 0xb9, 0x6d, 0xcb, 0x7b, 0x1b, 0xf9,
0x32, 0xaf, 0x9d, 0x6a, 0xa5, 0xb8, 0x2d, 0xfc, 0x1d, 0x08, 0x53, 0x03, 0x90, 0x4d, 0x4e, 0x84, 0x99, 0xe4, 0xce,
0xd9, 0x91, 0xdd, 0xb6, 0x85, 0x48, 0x8b, 0x29, 0x6e, 0xac, 0xcd, 0xc1, 0xf8, 0x1e, 0x73, 0x43, 0x69, 0xc6, 0xb5,
0xbd, 0xfd, 0x39, 0x63, 0x20, 0xd4, 0x38, 0x76, 0x7d, 0xb2, 0xa7, 0xcf, 0xed, 0x57, 0xc5, 0xf3, 0x2c, 0xbb, 0x14,
0x21, 0x06, 0x55, 0x9b, 0xe3, 0xef, 0x5e, 0x31, 0x4f, 0x7f, 0x5a, 0xa4, 0x0d, 0x82, 0x51, 0x49, 0x5f, 0xba, 0x58,
0x1c, 0x4a, 0x16, 0xd5, 0x17, 0xa8, 0x92, 0x24, 0x1f, 0x8c, 0xff, 0xd8, 0xae, 0x2e, 0x01, 0xd3, 0xad, 0x3b, 0x4b,
0xda, 0x46, 0xeb, 0xc9, 0xde, 0x9a, 0x8f, 0x87, 0xd7, 0x3a, 0x80, 0x6f, 0x2f, 0xc8, 0xb1, 0xb4, 0x37, 0xf7, 0x0a,
0x22, 0x13, 0x28, 0x7c, 0xcc, 0x3c, 0x89, 0xc7, 0xc3, 0x96, 0x56, 0x07, 0xbf, 0x7e, 0xf0, 0x0b, 0x2b, 0x97, 0x52,
0x35, 0x41, 0x79, 0x61, 0xa6, 0x4c, 0x10, 0xfe, 0xbc, 0x26, 0x95, 0x88, 0x8a, 0xb0, 0xa3, 0xfb, 0xc0, 0x18, 0x94,
0xf2, 0xe1, 0xe5, 0xe9, 0x5d, 0xd0, 0xdc, 0x11, 0x66, 0x64, 0x5c, 0xec, 0x59, 0x42, 0x75, 0x12, 0xf5, 0x74, 0x9c,
0xaa, 0x23, 0x0e, 0x86, 0xab, 0xbe, 0x2a, 0x02, 0xe7, 0x67, 0xe6, 0x44, 0xa2, 0x6c, 0xc2, 0x93, 0x9f, 0xf1, 0xf6,
0xfa, 0x36, 0xd2, 0x50, 0x68, 0x9e, 0x62, 0x71, 0x15, 0x3d, 0xd6, 0x40, 0xc4, 0xe2, 0x0f, 0x8e, 0x83, 0x77, 0x6b,
0x25, 0x05, 0x3f, 0x0c, 0x30, 0xea, 0x70, 0xb7, 0xa1, 0xe8, 0xa9, 0x65, 0x8d, 0x27, 0x1a, 0xdb, 0x81, 0xb3, 0xa0,
0xf4, 0x45, 0x7a, 0x19, 0xdf, 0xee, 0x78, 0x34, 0x60};
u8 S1[256] = {
0x55, 0xc2, 0x63, 0x71, 0x3b, 0xc8, 0x47, 0x86, 0x9f, 0x3c, 0xda, 0x5b, 0x29, 0xaa, 0xfd, 0x77, 0x8c, 0xc5, 0x94,
0x0c, 0xa6, 0x1a, 0x13, 0x00, 0xe3, 0xa8, 0x16, 0x72, 0x40, 0xf9, 0xf8, 0x42, 0x44, 0x26, 0x68, 0x96, 0x81, 0xd9,
0x45, 0x3e, 0x10, 0x76, 0xc6, 0xa7, 0x8b, 0x39, 0x43, 0xe1, 0x3a, 0xb5, 0x56, 0x2a, 0xc0, 0x6d, 0xb3, 0x05, 0x22,
0x66, 0xbf, 0xdc, 0x0b, 0xfa, 0x62, 0x48, 0xdd, 0x20, 0x11, 0x06, 0x36, 0xc9, 0xc1, 0xcf, 0xf6, 0x27, 0x52, 0xbb,
0x69, 0xf5, 0xd4, 0x87, 0x7f, 0x84, 0x4c, 0xd2, 0x9c, 0x57, 0xa4, 0xbc, 0x4f, 0x9a, 0xdf, 0xfe, 0xd6, 0x8d, 0x7a,
0xeb, 0x2b, 0x53, 0xd8, 0x5c, 0xa1, 0x14, 0x17, 0xfb, 0x23, 0xd5, 0x7d, 0x30, 0x67, 0x73, 0x08, 0x09, 0xee, 0xb7,
0x70, 0x3f, 0x61, 0xb2, 0x19, 0x8e, 0x4e, 0xe5, 0x4b, 0x93, 0x8f, 0x5d, 0xdb, 0xa9, 0xad, 0xf1, 0xae, 0x2e, 0xcb,
0x0d, 0xfc, 0xf4, 0x2d, 0x46, 0x6e, 0x1d, 0x97, 0xe8, 0xd1, 0xe9, 0x4d, 0x37, 0xa5, 0x75, 0x5e, 0x83, 0x9e, 0xab,
0x82, 0x9d, 0xb9, 0x1c, 0xe0, 0xcd, 0x49, 0x89, 0x01, 0xb6, 0xbd, 0x58, 0x24, 0xa2, 0x5f, 0x38, 0x78, 0x99, 0x15,
0x90, 0x50, 0xb8, 0x95, 0xe4, 0xd0, 0x91, 0xc7, 0xce, 0xed, 0x0f, 0xb4, 0x6f, 0xa0, 0xcc, 0xf0, 0x02, 0x4a, 0x79,
0xc3, 0xde, 0xa3, 0xef, 0xea, 0x51, 0xe6, 0x6b, 0x18, 0xec, 0x1b, 0x2c, 0x80, 0xf7, 0x74, 0xe7, 0xff, 0x21, 0x5a,
0x6a, 0x54, 0x1e, 0x41, 0x31, 0x92, 0x35, 0xc4, 0x33, 0x07, 0x0a, 0xba, 0x7e, 0x0e, 0x34, 0x88, 0xb1, 0x98, 0x7c,
0xf3, 0x3d, 0x60, 0x6c, 0x7b, 0xca, 0xd3, 0x1f, 0x32, 0x65, 0x04, 0x28, 0x64, 0xbe, 0x85, 0x9b, 0x2f, 0x59, 0x8a,
0xd7, 0xb0, 0x25, 0xac, 0xaf, 0x12, 0x03, 0xe2, 0xf2}; /* the constants D */
u32 EK_d[16] = {0x44D7, 0x26BC, 0x626B, 0x135E, 0x5789, 0x35E2, 0x7135, 0x09AF,
0x4D78, 0x2F13, 0x6BC4, 0x1AF1, 0x5E26, 0x3C4D, 0x789A, 0x47AC};
/* ——————————————————————- */
/* c = a + b mod (2^31 1) */
u32 AddM(u32 a, u32 b)
{
u32 c = a + b;
return (c & 0x7FFFFFFF) + (c >> 31);
}
/* LFSR with initialization mode */
void LFSRWithInitialisationMode(u32 u)
{
u32 f, v;
f = ZUC_LFSR_S0;
v = MulByPow2(ZUC_LFSR_S0, 8);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S4, 20);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S10, 21);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S13, 17);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S15, 15);
f = AddM(f, v);
f = AddM(f, u); /* update the state */
ZUC_LFSR_S0 = ZUC_LFSR_S1;
ZUC_LFSR_S1 = ZUC_LFSR_S2;
ZUC_LFSR_S2 = ZUC_LFSR_S3;
ZUC_LFSR_S3 = ZUC_LFSR_S4;
ZUC_LFSR_S4 = ZUC_LFSR_S5;
ZUC_LFSR_S5 = ZUC_LFSR_S6;
ZUC_LFSR_S6 = ZUC_LFSR_S7;
ZUC_LFSR_S7 = ZUC_LFSR_S8;
ZUC_LFSR_S8 = ZUC_LFSR_S9;
ZUC_LFSR_S9 = ZUC_LFSR_S10;
ZUC_LFSR_S10 = ZUC_LFSR_S11;
ZUC_LFSR_S11 = ZUC_LFSR_S12;
ZUC_LFSR_S12 = ZUC_LFSR_S13;
ZUC_LFSR_S13 = ZUC_LFSR_S14;
ZUC_LFSR_S14 = ZUC_LFSR_S15;
ZUC_LFSR_S15 = f;
} /* LFSR with work mode */
void LFSRWithWorkMode()
{
u32 f, v;
f = ZUC_LFSR_S0;
v = MulByPow2(ZUC_LFSR_S0, 8);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S4, 20);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S10, 21);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S13, 17);
f = AddM(f, v);
v = MulByPow2(ZUC_LFSR_S15, 15);
f = AddM(f, v); /* update the state */
ZUC_LFSR_S0 = ZUC_LFSR_S1;
ZUC_LFSR_S1 = ZUC_LFSR_S2;
ZUC_LFSR_S2 = ZUC_LFSR_S3;
ZUC_LFSR_S3 = ZUC_LFSR_S4;
ZUC_LFSR_S4 = ZUC_LFSR_S5;
ZUC_LFSR_S5 = ZUC_LFSR_S6;
ZUC_LFSR_S6 = ZUC_LFSR_S7;
ZUC_LFSR_S7 = ZUC_LFSR_S8;
ZUC_LFSR_S8 = ZUC_LFSR_S9;
ZUC_LFSR_S9 = ZUC_LFSR_S10;
ZUC_LFSR_S10 = ZUC_LFSR_S11;
ZUC_LFSR_S11 = ZUC_LFSR_S12;
ZUC_LFSR_S12 = ZUC_LFSR_S13;
ZUC_LFSR_S13 = ZUC_LFSR_S14;
ZUC_LFSR_S14 = ZUC_LFSR_S15;
ZUC_LFSR_S15 = f;
}
/* BitReorganization */
void BitReorganization()
{
BRC_X0 = ((ZUC_LFSR_S15 & 0x7FFF8000) << 1) | (ZUC_LFSR_S14 & 0xFFFF);
BRC_X1 = ((ZUC_LFSR_S11 & 0xFFFF) << 16) | (ZUC_LFSR_S9 >> 15);
BRC_X2 = ((ZUC_LFSR_S7 & 0xFFFF) << 16) | (ZUC_LFSR_S5 >> 15);
BRC_X3 = ((ZUC_LFSR_S2 & 0xFFFF) << 16) | (ZUC_LFSR_S0 >> 15);
}
/* L1 */
u32 L1(u32 X)
{
return (X ^ ROT(X, 2) ^ ROT(X, 10) ^ ROT(X, 18) ^ ROT(X, 24));
} /* L2 */
u32 L2(u32 X)
{
return (X ^ ROT(X, 8) ^ ROT(X, 14) ^ ROT(X, 22) ^ ROT(X, 30));
}
/* F */
u32 F()
{
u32 W, W1, W2, u, v;
W = (BRC_X0 ^ F_R1) + F_R2;
W1 = F_R1 + BRC_X1;
W2 = F_R2 ^ BRC_X2;
u = L1((W1 << 16) | (W2 >> 16));
v = L2((W2 << 16) | (W1 >> 16));
F_R1 = MAKEU32(S0[u >> 24], S1[(u >> 16) & 0xFF], S0[(u >> 8) & 0xFF], S1[u & 0xFF]);
F_R2 = MAKEU32(S0[v >> 24], S1[(v >> 16) & 0xFF], S0[(v >> 8) & 0xFF], S1[v & 0xFF]);
return W;
}
/* initialize */
void zuc_initialize(u8* k, u8* iv)
{
u32 w, nCount; /* expand key */
ZUC_LFSR_S0 = MAKEU31(k[0], EK_d[0], iv[0]);
ZUC_LFSR_S1 = MAKEU31(k[1], EK_d[1], iv[1]);
ZUC_LFSR_S2 = MAKEU31(k[2], EK_d[2], iv[2]);
ZUC_LFSR_S3 = MAKEU31(k[3], EK_d[3], iv[3]);
ZUC_LFSR_S4 = MAKEU31(k[4], EK_d[4], iv[4]);
ZUC_LFSR_S5 = MAKEU31(k[5], EK_d[5], iv[5]);
ZUC_LFSR_S6 = MAKEU31(k[6], EK_d[6], iv[6]);
ZUC_LFSR_S7 = MAKEU31(k[7], EK_d[7], iv[7]);
ZUC_LFSR_S8 = MAKEU31(k[8], EK_d[8], iv[8]);
ZUC_LFSR_S9 = MAKEU31(k[9], EK_d[9], iv[9]);
ZUC_LFSR_S10 = MAKEU31(k[10], EK_d[10], iv[10]);
ZUC_LFSR_S11 = MAKEU31(k[11], EK_d[11], iv[11]);
ZUC_LFSR_S12 = MAKEU31(k[12], EK_d[12], iv[12]);
ZUC_LFSR_S13 = MAKEU31(k[13], EK_d[13], iv[13]);
ZUC_LFSR_S14 = MAKEU31(k[14], EK_d[14], iv[14]);
ZUC_LFSR_S15 = MAKEU31(k[15], EK_d[15], iv[15]); /* set F_R1 and F_R2 to zero */
F_R1 = 0;
F_R2 = 0;
nCount = 32;
while (nCount > 0) {
BitReorganization();
w = F();
LFSRWithInitialisationMode(w >> 1);
nCount--;
}
}
void zuc_generate_keystream(int KeystreamLen, u32* pKeystream)
{
int i;
{
BitReorganization();
F(); /* discard the output of F */
LFSRWithWorkMode();
}
for (i = 0; i < KeystreamLen; i++) {
BitReorganization();
pKeystream[i] = F() ^ BRC_X3;
LFSRWithWorkMode();
}
}

@ -41,6 +41,10 @@ add_executable(test_eea2 test_eea2.cc)
target_link_libraries(test_eea2 srslte_common srslte_phy ${CMAKE_THREAD_LIBS_INIT})
add_test(test_eea2 test_eea2)
add_executable(test_eea3 test_eea3.cc)
target_link_libraries(test_eea3 srslte_common srslte_phy ${CMAKE_THREAD_LIBS_INIT})
add_test(test_eea3 test_eea3)
add_executable(test_f12345 test_f12345.cc)
target_link_libraries(test_f12345 srslte_common ${CMAKE_THREAD_LIBS_INIT})
add_test(test_f12345 test_f12345)

@ -23,7 +23,6 @@
#include <stdio.h>
#include <assert.h>
#include "srslte/common/liblte_security.h"
#include "srslte/srslte.h"
#include "srslte/common/liblte_security.h"

@ -0,0 +1,87 @@
/*
* Includes
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "srslte/common/liblte_security.h"
#include "srslte/srslte.h"
/*
* Prototypes
*/
int32 arrcmp(uint8_t const* const a, uint8_t const* const b, uint32 len)
{
uint32 i = 0;
for (i = 0; i < len; i++) {
if (a[i] != b[i]) {
return a[i] - b[i];
}
}
return 0;
}
/*
* Tests
*
* Document Reference: 33.401 V13.1.0 Annex C.1
*/
void test_set_1()
{
LIBLTE_ERROR_ENUM err_lte = LIBLTE_ERROR_INVALID_INPUTS;
int32 err_cmp = 0;
uint8_t key[] = {0x17, 0x3d, 0x14, 0xba, 0x50, 0x03, 0x73, 0x1d, 0x7a, 0x60, 0x04, 0x94, 0x70, 0xf0, 0x0a, 0x29};
uint32_t count = 0x66035492;
uint8_t bearer = 0xf;
uint8_t direction = 0;
uint32_t len_bits = 193;
uint32_t len_bytes = (len_bits + 7) / 8;
uint8_t msg[] = {0x6c, 0xf6, 0x53, 0x40, 0x73, 0x55, 0x52, 0xab, 0x0c, 0x97, 0x52, 0xfa, 0x6f, 0x90,
0x25, 0xfe, 0x0b, 0xd6, 0x75, 0xd9, 0x00, 0x58, 0x75, 0xb2, 0x00, 0x00, 0x00, 0x00};
uint8_t ct[] = {0xa6, 0xc8, 0x5f, 0xc6, 0x6a, 0xfb, 0x85, 0x33, 0xaa, 0xfc, 0x25, 0x18, 0xdf, 0xe7,
0x84, 0x94, 0x0e, 0xe1, 0xe4, 0xb0, 0x30, 0x23, 0x8c, 0xc8, 0x00, 0x00, 0x00, 0x00};
uint8_t* out = (uint8_t*)calloc(len_bytes, sizeof(uint8_t));
// encryption
err_lte = liblte_security_encryption_eea3(key, count, bearer, direction, msg, len_bits, out);
assert(err_lte == LIBLTE_SUCCESS);
// compare cipher text
err_cmp = arrcmp(ct, out, len_bytes);
for (int i = 0; i < len_bytes; i++){
printf("%x ", out[i]);
}
printf("\n");
if (err_cmp == 0) {
printf("Success\n");
} else {
printf("Fail\n");
}
assert(err_cmp == 0);
// decryption
// err_lte = liblte_security_decryption_eea3(key, count, bearer, direction, ct, len_bits, out);
// assert(err_lte == LIBLTE_SUCCESS);
// compare cipher text
// err_cmp = arrcmp(msg, out, len_bytes);
// assert(err_cmp == 0);
free(out);
}
int main(int argc, char* argv[])
{
test_set_1();
}
Loading…
Cancel
Save