2rx diversity equalizer working in matlab in gen/sse/avx

master
Ismael Gomez 8 years ago
parent 67d2b91354
commit e4a94bcf33

@ -1,6 +1,6 @@
clear
addpath('../../debug/srslte/lib/mimo/test')
addpath('../../build/srslte/lib/mimo/test')
%enb = lteRMCDL('R.10'); % 2-ports
enb = lteRMCDL('R.0'); % 1-ports
@ -11,7 +11,7 @@ cec.InterpWinSize = 1;
cec.InterpWindow = 'Causal';
cfg.Seed = 1; % Random channel seed
cfg.NRxAnts = 1; % 1 receive antenna
cfg.NRxAnts = 2; % 1 receive antenna
cfg.DelayProfile = 'ETU'; % EVA delay spread
cfg.DopplerFreq = 100; % 120Hz Doppler frequency
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
@ -47,13 +47,8 @@ else
Nt=1;
end
if (Nr > 1)
rx=reshape(rxGrid,p,n,Nr);
hp=reshape(h,p,n,Nr,Nt);
else
rx=rxGrid;
hp=h;
end
rx=reshape(rxGrid,p*n,Nr);
hp=reshape(h,p*n,Nr,Nt);
if (Nt > 1)
output_mat = lteTransmitDiversityDecode(rx, hp);
@ -65,6 +60,6 @@ output_srs = srslte_diversitydecode(rx, hp, n0);
plot(abs(output_mat(:)-output_srs(:)))
mean(abs(output_mat(:)-output_srs(:)).^2)
t=1:10;
t=1:100;
plot(t,real(output_mat(t)),t,real(output_srs(t)))

@ -83,6 +83,13 @@ SRSLTE_API int srslte_predecoding_diversity(cf_t *y,
int nof_ports,
int nof_symbols);
SRSLTE_API int srslte_predecoding_diversity_multi(cf_t *y[SRSLTE_MAX_RXANT],
cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
cf_t *x[SRSLTE_MAX_LAYERS],
int nof_rxant,
int nof_ports,
int nof_symbols);
SRSLTE_API int srslte_predecoding_type(cf_t *y,
cf_t *h[SRSLTE_MAX_PORTS],
cf_t *x[SRSLTE_MAX_LAYERS],

@ -38,7 +38,7 @@
#include <xmmintrin.h>
#include <pmmintrin.h>
int srslte_predecoding_single_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate);
int srslte_predecoding_diversity2_sse(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS], int nof_symbols);
int srslte_predecoding_diversity2_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT], cf_t *x[SRSLTE_MAX_LAYERS], int nof_rxant, int nof_symbols);
#endif
#ifdef LV_HAVE_AVX
@ -160,8 +160,6 @@ int srslte_predecoding_single_avx(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_
__m256 h1Val1, h2Val1, y1Val1, y2Val1, h12square, h1square, h2square, h1_p, h2_p, h1conj1, h2conj1, x1Val, x2Val;
__m256 h1Val2, h2Val2, y1Val2, y2Val2, h1conj2, h2conj2;
printf("using avx\n");
for (int i=0;i<nof_symbols/8;i++) {
y1Val1 = _mm256_load_ps(yPtr1); yPtr1+=8;
y2Val1 = _mm256_load_ps(yPtr1); yPtr1+=8;
@ -255,14 +253,14 @@ int srslte_predecoding_single(cf_t *y_, cf_t *h_, cf_t *x, int nof_symbols, floa
int nof_rxant = 1;
#ifdef LV_HAVE_AVX
if (nof_symbols > 32) {
if (nof_symbols > 32 && nof_rxant <= 2) {
return srslte_predecoding_single_avx(y, h, x, nof_rxant, nof_symbols, noise_estimate);
} else {
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
}
#else
#ifdef LV_HAVE_SSE
if (nof_symbols > 32) {
if (nof_symbols > 32 && nof_rxant <= 2) {
return srslte_predecoding_single_sse(y, h, x, nof_rxant, nof_symbols, noise_estimate);
} else {
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
@ -295,54 +293,67 @@ int srslte_predecoding_single_multi(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MA
}
/* C implementatino of the SFBC equalizer */
int srslte_predecoding_diversity_gen_(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
int nof_ports, int nof_symbols, int symbol_start)
int srslte_predecoding_diversity_gen_(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
cf_t *x[SRSLTE_MAX_LAYERS],
int nof_rxant, int nof_ports, int nof_symbols, int symbol_start)
{
int i;
if (nof_ports == 2) {
cf_t h00, h01, h10, h11, r0, r1;
float hh;
for (i = symbol_start/2; i < nof_symbols / 2; i++) {
h00 = h[0][2 * i];
h01 = h[0][2 * i+1];
h10 = h[1][2 * i];
h11 = h[1][2 * i+1];
hh = crealf(h00) * crealf(h00) + cimagf(h00) * cimagf(h00)
+ crealf(h11) * crealf(h11) + cimagf(h11) * cimagf(h11);
r0 = y[2 * i];
r1 = y[2 * i + 1];
if (hh == 0) {
hh = 1e-4;
float hh = 0;
cf_t x0 = 0;
cf_t x1 = 0;
for (int p=0;p<nof_rxant;p++) {
h00 = h[0][p][2 * i];
h01 = h[0][p][2 * i+1];
h10 = h[1][p][2 * i];
h11 = h[1][p][2 * i+1];
hh += crealf(h00) * crealf(h00) + cimagf(h00) * cimagf(h00)
+ crealf(h11) * crealf(h11) + cimagf(h11) * cimagf(h11);
r0 = y[p][2 * i];
r1 = y[p][2 * i + 1];
if (hh == 0) {
hh = 1e-4;
}
x0 += (conjf(h00) * r0 + h11 * conjf(r1));
x1 += (-h10 * conj(r0) + conj(h01) * r1);
}
x[0][i] = (conjf(h00) * r0 + h11 * conjf(r1)) / hh * sqrt(2);
x[1][i] = (-h10 * conj(r0) + conj(h01) * r1) / hh * sqrt(2);
x[0][i] = x0 / hh * sqrt(2);
x[1][i] = x1 / hh * sqrt(2);
}
return i;
} else if (nof_ports == 4) {
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
float hh02, hh13;
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
for (i = symbol_start; i < m_ap; i++) {
h0 = h[0][4 * i];
h1 = h[1][4 * i + 2];
h2 = h[2][4 * i];
h3 = h[3][4 * i + 2];
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
r0 = y[4 * i];
r1 = y[4 * i + 1];
r2 = y[4 * i + 2];
r3 = y[4 * i + 3];
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
float hh02 = 0, hh13 = 0;
cf_t x0 = 0, x1 = 0, x2 = 0, x3 = 0;
for (int p=0;p<nof_rxant;p++) {
h0 = h[0][p][4 * i];
h1 = h[1][p][4 * i + 2];
h2 = h[2][p][4 * i];
h3 = h[3][p][4 * i + 2];
hh02 += crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
hh13 += crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
r0 = y[p][4 * i];
r1 = y[p][4 * i + 1];
r2 = y[p][4 * i + 2];
r3 = y[p][4 * i + 3];
x0 += (conjf(h0) * r0 + h2 * conjf(r1));
x1 += (-h2 * conjf(r0) + conjf(h0) * r1);
x2 += (conjf(h1) * r2 + h3 * conjf(r3));
x3 += (-h3 * conjf(r2) + conjf(h1) * r3);
}
x[0][i] = x0 / hh02 * sqrt(2);
x[1][i] = x1 / hh02 * sqrt(2);
x[2][i] = x2 / hh13 * sqrt(2);
x[3][i] = x3 / hh13 * sqrt(2);
}
return i;
} else {
@ -351,86 +362,160 @@ int srslte_predecoding_diversity_gen_(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *
}
}
int srslte_predecoding_diversity_gen(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
int nof_ports, int nof_symbols) {
return srslte_predecoding_diversity_gen_(y, h, x, nof_ports, nof_symbols, 0);
int srslte_predecoding_diversity_gen(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
cf_t *x[SRSLTE_MAX_LAYERS],
int nof_rxant, int nof_ports, int nof_symbols) {
return srslte_predecoding_diversity_gen_(y, h, x, nof_rxant, nof_ports, nof_symbols, 0);
}
/* SSE implementation of the 2-port SFBC equalizer */
#ifdef LV_HAVE_SSE
int srslte_predecoding_diversity2_sse(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS], int nof_symbols)
int srslte_predecoding_diversity2_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
cf_t *x[SRSLTE_MAX_LAYERS],
int nof_rxant, int nof_symbols)
{
float *x0Ptr = (float*) x[0];
float *x1Ptr = (float*) x[1];
const float *h0Ptr = (const float*) h[0];
const float *h1Ptr = (const float*) h[1];
const float *yPtr = (const float*) y;
const float *h0Ptr0 = (const float*) h[0][0];
const float *h1Ptr0 = (const float*) h[1][0];
const float *h0Ptr1 = (const float*) h[0][1];
const float *h1Ptr1 = (const float*) h[1][1];
const float *yPtr0 = (const float*) y[0];
const float *yPtr1 = (const float*) y[1];
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
__m128 sqrt2 = _mm_setr_ps(sqrt(2), sqrt(2), sqrt(2), sqrt(2));
__m128 h0Val_0, h0Val_1, h1Val_0, h1Val_1, h00, h00conj, h01, h01conj, h10, h11, hh, hhshuf, hhsum, hhadd;
__m128 r0Val, r1Val, r0, r1, r0conj, r1conj;
__m128 h0Val_00, h0Val_10, h1Val_00, h1Val_10, h000, h00conj0, h010, h01conj0, h100, h110;
__m128 h0Val_01, h0Val_11, h1Val_01, h1Val_11, h001, h00conj1, h011, h01conj1, h101, h111;
__m128 hh, hhshuf, hhsum, hhadd;
__m128 r0Val0, r1Val0, r00, r10, r0conj0, r1conj0;
__m128 r0Val1, r1Val1, r01, r11, r0conj1, r1conj1;
__m128 x0, x1;
for (int i=0;i<nof_symbols/4;i++) {
h0Val_0 = _mm_load_ps(h0Ptr); h0Ptr+=4; h0Val_1 = _mm_load_ps(h0Ptr); h0Ptr+=4;
h1Val_0 = _mm_load_ps(h1Ptr); h1Ptr+=4; h1Val_1 = _mm_load_ps(h1Ptr); h1Ptr+=4;
h0Val_00 = _mm_load_ps(h0Ptr0); h0Ptr0+=4; h0Val_10 = _mm_load_ps(h0Ptr0); h0Ptr0+=4;
h1Val_00 = _mm_load_ps(h1Ptr0); h1Ptr0+=4; h1Val_10 = _mm_load_ps(h1Ptr0); h1Ptr0+=4;
h00 = _mm_shuffle_ps(h0Val_0, h0Val_1, _MM_SHUFFLE(1, 0, 1, 0));
h01 = _mm_shuffle_ps(h0Val_0, h0Val_1, _MM_SHUFFLE(3, 2, 3, 2));
if (nof_rxant == 2) {
h0Val_01 = _mm_load_ps(h0Ptr1); h0Ptr1+=4; h0Val_11 = _mm_load_ps(h0Ptr1); h0Ptr1+=4;
h1Val_01 = _mm_load_ps(h1Ptr1); h1Ptr1+=4; h1Val_11 = _mm_load_ps(h1Ptr1); h1Ptr1+=4;
}
h10 = _mm_shuffle_ps(h1Val_0, h1Val_1, _MM_SHUFFLE(1, 0, 1, 0));
h11 = _mm_shuffle_ps(h1Val_0, h1Val_1, _MM_SHUFFLE(3, 2, 3, 2));
h000 = _mm_shuffle_ps(h0Val_00, h0Val_10, _MM_SHUFFLE(1, 0, 1, 0));
h010 = _mm_shuffle_ps(h0Val_00, h0Val_10, _MM_SHUFFLE(3, 2, 3, 2));
h100 = _mm_shuffle_ps(h1Val_00, h1Val_10, _MM_SHUFFLE(1, 0, 1, 0));
h110 = _mm_shuffle_ps(h1Val_00, h1Val_10, _MM_SHUFFLE(3, 2, 3, 2));
r0Val = _mm_load_ps(yPtr); yPtr+=4;
r1Val = _mm_load_ps(yPtr); yPtr+=4;
r0 = _mm_shuffle_ps(r0Val, r1Val, _MM_SHUFFLE(1, 0, 1, 0));
r1 = _mm_shuffle_ps(r0Val, r1Val, _MM_SHUFFLE(3, 2, 3, 2));
if (nof_rxant == 2) {
h001 = _mm_shuffle_ps(h0Val_01, h0Val_11, _MM_SHUFFLE(1, 0, 1, 0));
h011 = _mm_shuffle_ps(h0Val_01, h0Val_11, _MM_SHUFFLE(3, 2, 3, 2));
h101 = _mm_shuffle_ps(h1Val_01, h1Val_11, _MM_SHUFFLE(1, 0, 1, 0));
h111 = _mm_shuffle_ps(h1Val_01, h1Val_11, _MM_SHUFFLE(3, 2, 3, 2));
}
r0Val0 = _mm_load_ps(yPtr0); yPtr0+=4;
r1Val0 = _mm_load_ps(yPtr0); yPtr0+=4;
r00 = _mm_shuffle_ps(r0Val0, r1Val0, _MM_SHUFFLE(1, 0, 1, 0));
r10 = _mm_shuffle_ps(r0Val0, r1Val0, _MM_SHUFFLE(3, 2, 3, 2));
if (nof_rxant == 2) {
r0Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
r1Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
r01 = _mm_shuffle_ps(r0Val1, r1Val1, _MM_SHUFFLE(1, 0, 1, 0));
r11 = _mm_shuffle_ps(r0Val1, r1Val1, _MM_SHUFFLE(3, 2, 3, 2));
}
/* Compute channel gain */
hhadd = _mm_hadd_ps(_mm_mul_ps(h00, h00), _mm_mul_ps(h11, h11));
hhadd = _mm_hadd_ps(_mm_mul_ps(h000, h000), _mm_mul_ps(h110, h110));
hhshuf = _mm_shuffle_ps(hhadd, hhadd, _MM_SHUFFLE(3, 1, 2, 0));
hhsum = _mm_hadd_ps(hhshuf, hhshuf);
hh = _mm_shuffle_ps(hhsum, hhsum, _MM_SHUFFLE(1, 1, 0, 0)); // h00^2+h11^2
/* Add channel from 2nd antenna */
if (nof_rxant == 2) {
hhadd = _mm_hadd_ps(_mm_mul_ps(h001, h001), _mm_mul_ps(h111, h111));
hhshuf = _mm_shuffle_ps(hhadd, hhadd, _MM_SHUFFLE(3, 1, 2, 0));
hhsum = _mm_hadd_ps(hhshuf, hhshuf);
hh = _mm_add_ps(hh, _mm_shuffle_ps(hhsum, hhsum, _MM_SHUFFLE(1, 1, 0, 0))); // h00^2+h11^2
}
// Conjugate value
h00conj = _mm_xor_ps(h00, conjugator);
h01conj = _mm_xor_ps(h01, conjugator);
r0conj = _mm_xor_ps(r0, conjugator);
r1conj = _mm_xor_ps(r1, conjugator);
h00conj0 = _mm_xor_ps(h000, conjugator);
h01conj0 = _mm_xor_ps(h010, conjugator);
r0conj0 = _mm_xor_ps(r00, conjugator);
r1conj0 = _mm_xor_ps(r10, conjugator);
if (nof_rxant == 2) {
h00conj1 = _mm_xor_ps(h001, conjugator);
h01conj1 = _mm_xor_ps(h011, conjugator);
r0conj1 = _mm_xor_ps(r01, conjugator);
r1conj1 = _mm_xor_ps(r11, conjugator);
}
// Multiply by channel matrix
x0 = _mm_add_ps(PROD(h00conj, r0), PROD(h11, r1conj));
x1 = _mm_sub_ps(PROD(h01conj, r1), PROD(h10, r0conj));
x0 = _mm_add_ps(PROD(h00conj0, r00), PROD(h110, r1conj0));
x1 = _mm_sub_ps(PROD(h01conj0, r10), PROD(h100, r0conj0));
// Add received symbol from 2nd antenna
if (nof_rxant == 2) {
x0 = _mm_add_ps(x0, _mm_add_ps(PROD(h00conj1, r01), PROD(h111, r1conj1)));
x1 = _mm_add_ps(x1, _mm_sub_ps(PROD(h01conj1, r11), PROD(h101, r0conj1)));
}
x0 = _mm_mul_ps(_mm_div_ps(x0, hh), sqrt2);
x1 = _mm_mul_ps(_mm_div_ps(x1, hh), sqrt2);
_mm_store_ps(x0Ptr, x0); x0Ptr+=4;
_mm_store_ps(x1Ptr, x1); x1Ptr+=4;
}
// Compute remaining symbols using generic implementation
srslte_predecoding_diversity_gen_(y, h, x, 2, nof_symbols, 4*(nof_symbols/4));
srslte_predecoding_diversity_gen_(y, h, x, nof_rxant, 2, nof_symbols, 4*(nof_symbols/4));
return nof_symbols;
}
#endif
int srslte_predecoding_diversity(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
int srslte_predecoding_diversity(cf_t *y_, cf_t *h_[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
int nof_ports, int nof_symbols)
{
cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT];
cf_t *y[SRSLTE_MAX_RXANT];
uint32_t nof_rxant = 1;
for (int i=0;i<nof_ports;i++) {
h[i][0] = h_[i];
}
y[0] = y_;
#ifdef LV_HAVE_SSE
if (nof_symbols > 32 && nof_ports == 2) {
return srslte_predecoding_diversity2_sse(y, h, x, nof_rxant, nof_symbols);
} else {
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
}
#else
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
#endif
}
int srslte_predecoding_diversity_multi(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT], cf_t *x[SRSLTE_MAX_LAYERS],
int nof_rxant, int nof_ports, int nof_symbols)
{
#ifdef LV_HAVE_SSE
if (nof_symbols > 32 && nof_ports == 2) {
return srslte_predecoding_diversity2_sse(y, h, x, nof_symbols);
return srslte_predecoding_diversity2_sse(y, h, x, nof_rxant, nof_symbols);
} else {
return srslte_predecoding_diversity_gen(y, h, x, nof_ports, nof_symbols);
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
}
#else
return srslte_predecoding_diversity_gen(y, h, x, nof_ports, nof_symbols);
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
#endif
}
/* 36.211 v10.3.0 Section 6.3.4 */
int srslte_predecoding_type(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
int nof_ports, int nof_layers, int nof_symbols, srslte_mimo_type_t type, float noise_estimate) {

@ -65,13 +65,10 @@ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
uint32_t nof_rx_ants = 1;
const mwSize *dims = mxGetDimensions(INPUT);
mwSize ndims = mxGetNumberOfDimensions(INPUT);
nof_symbols = dims[0]*dims[1];
nof_symbols = dims[0];
if (ndims >= 3) {
nof_rx_ants = dims[2];
}
if (ndims >= 4) {
nof_tx_ports = dims[3];
if (ndims >= 2) {
nof_rx_ants = dims[1];
}
// Read channel estimates
@ -79,7 +76,15 @@ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
mexErrMsgTxt("Error reading hest\n");
return;
}
dims = mxGetDimensions(HEST);
ndims = mxGetNumberOfDimensions(HEST);
if (ndims == 3) {
nof_tx_ports = dims[2];
}
mexPrintf("nof_tx_ports=%d, nof_rx_ants=%d, nof_symbols=%d\n", nof_tx_ports, nof_rx_ants, nof_symbols);
// Read noise estimate
float noise_estimate = 0;
if (nrhs >= NOF_INPUTS) {
@ -111,12 +116,10 @@ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
for (int j=0;j<nof_rx_ants;j++) {
y[j] = &input[j*nof_symbols];
}
mexPrintf("nof_tx_ports=%d, nof_rx_ants=%d, nof_symbols=%d\n", nof_tx_ports, nof_rx_ants, nof_symbols);
if (nof_tx_ports > 1) {
//srslte_predecoding_diversity(input, h, x, nof_tx_ports, nof_symbols);
//srslte_layerdemap_diversity(x, output, nof_tx_ports, nof_symbols / nof_tx_ports);
srslte_predecoding_diversity_multi(y, h, x, nof_rx_ants, nof_tx_ports, nof_symbols);
srslte_layerdemap_diversity(x, output, nof_tx_ports, nof_symbols / nof_tx_ports);
} else {
srslte_predecoding_single_multi(y, h[0], output, nof_rx_ants, nof_symbols, noise_estimate);
}

Loading…
Cancel
Save