Added functionality for printing nr metrics

master
David Rupprecht 4 years ago committed by David Rupprecht
parent 58a9ef6e7f
commit 43ec714ce1

@ -42,6 +42,14 @@ public:
void stop();
private:
void set_metrics_helper(const srsran::rf_metrics_t rf,
const srsran::sys_metrics_t sys,
const phy_metrics_t phy,
const mac_metrics_t mac[SRSRAN_MAX_CARRIERS],
const rrc_metrics_t rrc,
const uint32_t cc,
const uint32_t r);
std::string float_to_string(float f, int digits, bool add_semicolon = true);
std::ofstream file;

@ -39,10 +39,14 @@ public:
private:
static const bool FORCE_NEIGHBOUR_CELL = false; // Set to true for printing always neighbour cells
std::string float_to_string(float f, int digits);
std::string float_to_eng_string(float f, int digits);
void print_table(const bool display_neighbours);
void set_metrics_helper(const phy_metrics_t phy,
const mac_metrics_t mac[SRSRAN_MAX_CARRIERS],
const rrc_metrics_t rrc,
bool display_neighbours,
const uint32_t r);
std::string float_to_string(float f, int digits);
std::string float_to_eng_string(float f, int digits);
void print_table(const bool display_neighbours);
bool do_print = false;
bool table_has_neighbours = false; ///< state of last table head

@ -30,14 +30,17 @@ namespace srsue {
typedef struct {
uint32_t ul_dropped_sdus;
mac_metrics_t mac[SRSRAN_MAX_CARRIERS];
mac_metrics_t mac_nr[SRSRAN_MAX_CARRIERS];
srsran::rlc_metrics_t rlc;
nas_metrics_t nas;
rrc_metrics_t rrc;
rrc_metrics_t rrc_nr;
} stack_metrics_t;
typedef struct {
srsran::rf_metrics_t rf;
phy_metrics_t phy;
phy_metrics_t phy_nr;
gw_metrics_t gw;
stack_metrics_t stack;
srsran::sys_metrics_t sys;

@ -65,6 +65,108 @@ void metrics_csv::stop()
}
}
void metrics_csv::set_metrics_helper(const srsran::rf_metrics_t rf,
const srsran::sys_metrics_t sys,
const phy_metrics_t phy,
const mac_metrics_t mac[SRSRAN_MAX_CARRIERS],
const rrc_metrics_t rrc,
const uint32_t cc,
const uint32_t r)
{
if (not file.is_open()) {
return;
}
file << time_ms << ";";
// CC and PCI
file << cc << ";";
file << phy.info[r].dl_earfcn << ";";
file << phy.info[r].pci << ";";
// Print PHY metrics for first CC
file << float_to_string(phy.ch[r].rsrp, 2);
file << float_to_string(phy.ch[r].pathloss, 2);
file << float_to_string(phy.sync[r].cfo, 2);
// Find strongest neighbour for this EARFCN (cells are ordered)
bool has_neighbour = false;
for (auto& c : rrc.neighbour_cells) {
if (c.earfcn == phy.info[r].dl_earfcn && c.pci != phy.info[r].pci) {
file << c.pci << ";";
file << float_to_string(c.rsrp, 2);
file << float_to_string(c.cfo_hz, 2);
has_neighbour = true;
break;
}
}
if (!has_neighbour) {
file << "n/a;";
file << "n/a;";
file << "n/a;";
}
file << float_to_string(phy.dl[r].mcs, 2);
file << float_to_string(phy.ch[r].sinr, 2);
file << float_to_string(phy.dl[r].turbo_iters, 2);
if (mac[r].rx_brate > 0) {
file << float_to_string(mac[r].rx_brate / (mac[r].nof_tti * 1e-3), 2);
} else {
file << float_to_string(0, 2);
}
int rx_pkts = mac[r].rx_pkts;
int rx_errors = mac[r].rx_errors;
if (rx_pkts > 0) {
file << float_to_string((float)100 * rx_errors / rx_pkts, 1);
} else {
file << float_to_string(0, 2);
}
file << float_to_string(phy.sync[r].ta_us, 2);
file << float_to_string(phy.sync[r].distance_km, 2);
file << float_to_string(phy.sync[r].speed_kmph, 2);
file << float_to_string(phy.ul[r].mcs, 2);
file << float_to_string((float)mac[r].ul_buffer, 2);
if (mac[r].tx_brate > 0) {
file << float_to_string(mac[r].tx_brate / (mac[r].nof_tti * 1e-3), 2);
} else {
file << float_to_string(0, 2);
}
// Sum UL BLER for all CCs
int tx_pkts = mac[r].tx_pkts;
int tx_errors = mac[r].tx_errors;
if (tx_pkts > 0) {
file << float_to_string((float)100 * tx_errors / tx_pkts, 1);
} else {
file << float_to_string(0, 2);
}
file << float_to_string(rf.rf_o, 2);
file << float_to_string(rf.rf_u, 2);
file << float_to_string(rf.rf_l, 2);
file << (rrc.state == RRC_STATE_CONNECTED ? "1.0" : "0.0") << ";";
// Write system metrics.
const srsran::sys_metrics_t& m = sys;
file << float_to_string(m.process_realmem, 2);
file << std::to_string(m.process_realmem_kB) << ";";
file << std::to_string(m.process_virtualmem_kB) << ";";
file << float_to_string(m.system_mem, 2);
file << float_to_string(m.process_cpu_usage, 2);
file << std::to_string(m.thread_count) << ";";
// Write the cpu metrics.
for (uint32_t i = 0, e = m.cpu_count, last_cpu_index = e - 1; i != e; ++i) {
file << float_to_string(m.cpu_load[i], 2, (i != last_cpu_index));
}
file << "\n";
}
void metrics_csv::set_metrics(const ue_metrics_t& metrics, const uint32_t period_usec)
{
std::unique_lock<std::mutex> lock(mutex);
@ -89,95 +191,20 @@ void metrics_csv::set_metrics(const ue_metrics_t& metrics, const uint32_t period
file << "\n";
}
// Metrics for LTE carrier
for (uint32_t r = 0; r < metrics.phy.nof_active_cc; r++) {
file << time_ms << ";";
// CC and PCI
file << r << ";";
file << metrics.phy.info[r].dl_earfcn << ";";
file << metrics.phy.info[r].pci << ";";
// Print PHY metrics for first CC
file << float_to_string(metrics.phy.ch[r].rsrp, 2);
file << float_to_string(metrics.phy.ch[r].pathloss, 2);
file << float_to_string(metrics.phy.sync[r].cfo, 2);
// Find strongest neighbour for this EARFCN (cells are ordered)
bool has_neighbour = false;
for (auto& c : metrics.stack.rrc.neighbour_cells) {
if (c.earfcn == metrics.phy.info[r].dl_earfcn && c.pci != metrics.phy.info[r].pci) {
file << c.pci << ";";
file << float_to_string(c.rsrp, 2);
file << float_to_string(c.cfo_hz, 2);
has_neighbour = true;
break;
}
}
if (!has_neighbour) {
file << "n/a;";
file << "n/a;";
file << "n/a;";
}
file << float_to_string(metrics.phy.dl[r].mcs, 2);
file << float_to_string(metrics.phy.ch[r].sinr, 2);
file << float_to_string(metrics.phy.dl[r].turbo_iters, 2);
if (metrics.stack.mac[r].rx_brate > 0) {
file << float_to_string(metrics.stack.mac[r].rx_brate / (metrics.stack.mac[r].nof_tti * 1e-3), 2);
} else {
file << float_to_string(0, 2);
}
int rx_pkts = metrics.stack.mac[r].rx_pkts;
int rx_errors = metrics.stack.mac[r].rx_errors;
if (rx_pkts > 0) {
file << float_to_string((float)100 * rx_errors / rx_pkts, 1);
} else {
file << float_to_string(0, 2);
}
file << float_to_string(metrics.phy.sync[r].ta_us, 2);
file << float_to_string(metrics.phy.sync[r].distance_km, 2);
file << float_to_string(metrics.phy.sync[r].speed_kmph, 2);
file << float_to_string(metrics.phy.ul[r].mcs, 2);
file << float_to_string((float)metrics.stack.mac[r].ul_buffer, 2);
if (metrics.stack.mac[r].tx_brate > 0) {
file << float_to_string(metrics.stack.mac[r].tx_brate / (metrics.stack.mac[r].nof_tti * 1e-3), 2);
} else {
file << float_to_string(0, 2);
}
// Sum UL BLER for all CCs
int tx_pkts = metrics.stack.mac[r].tx_pkts;
int tx_errors = metrics.stack.mac[r].tx_errors;
if (tx_pkts > 0) {
file << float_to_string((float)100 * tx_errors / tx_pkts, 1);
} else {
file << float_to_string(0, 2);
}
file << float_to_string(metrics.rf.rf_o, 2);
file << float_to_string(metrics.rf.rf_u, 2);
file << float_to_string(metrics.rf.rf_l, 2);
file << (metrics.stack.rrc.state == RRC_STATE_CONNECTED ? "1.0" : "0.0") << ";";
// Write system metrics.
const srsran::sys_metrics_t& m = metrics.sys;
file << float_to_string(m.process_realmem, 2);
file << std::to_string(m.process_realmem_kB) << ";";
file << std::to_string(m.process_virtualmem_kB) << ";";
file << float_to_string(m.system_mem, 2);
file << float_to_string(m.process_cpu_usage, 2);
file << std::to_string(m.thread_count) << ";";
// Write the cpu metrics.
for (uint32_t i = 0, e = m.cpu_count, last_cpu_index = e - 1; i != e; ++i) {
file << float_to_string(m.cpu_load[i], 2, (i != last_cpu_index));
}
set_metrics_helper(metrics.rf, metrics.sys, metrics.phy, metrics.stack.mac, metrics.stack.rrc, r, r);
}
file << "\n";
// Metrics for NR carrier
for (uint32_t r = 0; r < metrics.phy_nr.nof_active_cc; r++) {
set_metrics_helper(metrics.rf,
metrics.sys,
metrics.phy_nr,
metrics.stack.mac_nr,
metrics.stack.rrc,
r,
metrics.phy.nof_active_cc + r);
}
n_reports++;

@ -76,6 +76,62 @@ void metrics_stdout::print_table(const bool display_neighbours)
n_reports = 0;
}
void metrics_stdout::set_metrics_helper(const phy_metrics_t phy,
const mac_metrics_t mac[SRSRAN_MAX_CARRIERS],
const rrc_metrics_t rrc,
bool display_neighbours,
const uint32_t r)
{
if (phy.info[r].pci != UINT32_MAX) {
cout << std::setw(4) << phy.info[r].pci << std::setw(0);
} else {
cout << " n/a";
}
cout << float_to_string(phy.ch[r].rsrp, 2);
cout << float_to_string(phy.ch[r].pathloss, 2);
cout << float_to_eng_string(phy.sync[r].cfo, 2);
// Find strongest neighbour for this EARFCN (cells are ordered)
if (display_neighbours) {
bool has_neighbour = false;
for (auto& c : rrc.neighbour_cells) {
if (c.earfcn == phy.info[r].dl_earfcn && c.pci != phy.info[r].pci) {
cout << std::setw(4) << c.pci << std::setw(0);
cout << float_to_string(c.rsrp, 2);
has_neighbour = true;
break;
}
}
if (!has_neighbour) {
cout << " n/a";
cout << " n/a";
}
}
cout << float_to_string(phy.dl[r].mcs, 2);
cout << float_to_string(phy.ch[r].sinr, 2);
cout << float_to_string(phy.dl[r].turbo_iters, 2);
cout << float_to_eng_string((float)mac[r].rx_brate / (mac[r].nof_tti * 1e-3), 2);
if (mac[r].rx_pkts > 0) {
cout << float_to_string((float)100 * mac[r].rx_errors / mac[r].rx_pkts, 1) << "%";
} else {
cout << float_to_string(0, 1) << "%";
}
cout << float_to_string(phy.sync[r].ta_us, 2);
cout << float_to_string(phy.ul[r].mcs, 2);
cout << float_to_eng_string((float)mac[r].ul_buffer, 2);
cout << float_to_eng_string((float)mac[r].tx_brate / (mac[r].nof_tti * 1e-3), 2);
if (mac[r].tx_pkts > 0) {
cout << float_to_string((float)100 * mac[r].tx_errors / mac[r].tx_pkts, 1) << "%";
} else {
cout << float_to_string(0, 1) << "%";
}
cout << endl;
}
void metrics_stdout::set_metrics(const ue_metrics_t& metrics, const uint32_t period_usec)
{
if (ue == nullptr) {
@ -115,54 +171,13 @@ void metrics_stdout::set_metrics(const ue_metrics_t& metrics, const uint32_t per
for (uint32_t r = 0; r < metrics.phy.nof_active_cc; r++) {
cout << std::setw(2) << r;
if (metrics.phy.info[r].pci != UINT32_MAX) {
cout << std::setw(4) << metrics.phy.info[r].pci << std::setw(0);
} else {
cout << " n/a";
}
cout << float_to_string(metrics.phy.ch[r].rsrp, 2);
cout << float_to_string(metrics.phy.ch[r].pathloss, 2);
cout << float_to_eng_string(metrics.phy.sync[r].cfo, 2);
// Find strongest neighbour for this EARFCN (cells are ordered)
if (display_neighbours) {
bool has_neighbour = false;
for (auto& c : metrics.stack.rrc.neighbour_cells) {
if (c.earfcn == metrics.phy.info[r].dl_earfcn && c.pci != metrics.phy.info[r].pci) {
cout << std::setw(4) << c.pci << std::setw(0);
cout << float_to_string(c.rsrp, 2);
has_neighbour = true;
break;
}
}
if (!has_neighbour) {
cout << " n/a";
cout << " n/a";
}
}
cout << float_to_string(metrics.phy.dl[r].mcs, 2);
cout << float_to_string(metrics.phy.ch[r].sinr, 2);
cout << float_to_string(metrics.phy.dl[r].turbo_iters, 2);
cout << float_to_eng_string((float)metrics.stack.mac[r].rx_brate / (metrics.stack.mac[r].nof_tti * 1e-3), 2);
if (metrics.stack.mac[r].rx_pkts > 0) {
cout << float_to_string((float)100 * metrics.stack.mac[r].rx_errors / metrics.stack.mac[r].rx_pkts, 1) << "%";
} else {
cout << float_to_string(0, 1) << "%";
}
cout << float_to_string(metrics.phy.sync[r].ta_us, 2);
set_metrics_helper(metrics.phy, metrics.stack.mac, metrics.stack.rrc, display_neighbours, r);
}
cout << float_to_string(metrics.phy.ul[r].mcs, 2);
cout << float_to_eng_string((float)metrics.stack.mac[r].ul_buffer, 2);
cout << float_to_eng_string((float)metrics.stack.mac[r].tx_brate / (metrics.stack.mac[r].nof_tti * 1e-3), 2);
if (metrics.stack.mac[r].tx_pkts > 0) {
cout << float_to_string((float)100 * metrics.stack.mac[r].tx_errors / metrics.stack.mac[r].tx_pkts, 1) << "%";
} else {
cout << float_to_string(0, 1) << "%";
}
cout << endl;
for (uint32_t r = 0; r < metrics.phy_nr.nof_active_cc; r++) {
// Assumption LTE is followed by the NR carriers.
cout << std::setw(2) << metrics.phy.nof_active_cc + r;
set_metrics_helper(metrics.phy_nr, metrics.stack.mac_nr, metrics.stack.rrc, display_neighbours, r);
}
if (metrics.rf.rf_error) {

@ -60,6 +60,14 @@ public:
m->stack.rrc.neighbour_cells.push_back(neighbor); // need to add twice since we use CA
}
m->phy_nr.nof_active_cc = 1;
m->phy_nr.ch[0].rsrp = -10.0f;
m->phy_nr.ch[0].pathloss = 32;
m->stack.mac_nr[0].rx_pkts = 100;
m->stack.mac_nr[0].rx_errors = 2;
m->stack.mac_nr[0].rx_brate = 223;
m->stack.mac_nr[0].nof_tti = 1;
m->stack.rrc.state = (rand() % 2 == 0) ? RRC_STATE_CONNECTED : RRC_STATE_IDLE;
return true;

Loading…
Cancel
Save