Update test f12345 function

Moved XOR functions to lib

Added testcase for KDF

Minor liblte_security updates
master
David Rupprecht 4 years ago committed by David Rupprecht
parent 0ef8976d53
commit 15eaef21e2

@ -192,5 +192,8 @@ security_milenage_f2345(uint8_t* k, uint8_t* op, uint8_t* rand, uint8_t* res, ui
uint8_t security_milenage_f5_star(uint8_t* k, uint8_t* op, uint8_t* rand, uint8_t* ak);
int security_xor_f2345(uint8_t* k, uint8_t* rand, uint8_t* res, uint8_t* ck, uint8_t* ik, uint8_t* ak);
int security_xor_f1(uint8_t* k, uint8_t* rand, uint8_t* sqn, uint8_t* amf, uint8_t* mac_a);
} // namespace srsran
#endif // SRSRAN_SECURITY_H

@ -1155,13 +1155,13 @@ liblte_security_milenage_f2345(uint8* k, uint8* op_c, uint8* rand, uint8* res, u
for (i = 0; i < 16; i++) {
input[i] = rand[i] ^ op_c[i];
}
mbedtls_aes_crypt_ecb(&ctx, AES_ENCRYPT, input, temp);
aes_crypt_ecb(&ctx, AES_ENCRYPT, input, temp);
// Compute out for RES and AK
for (i = 0; i < 16; i++) {
input[i] = temp[i] ^ op_c[i];
}
input[15] ^= 1;
mbedtls_aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
for (i = 0; i < 16; i++) {
out[i] ^= op_c[i];
}
@ -1181,7 +1181,7 @@ liblte_security_milenage_f2345(uint8* k, uint8* op_c, uint8* rand, uint8* res, u
input[(i + 12) % 16] = temp[i] ^ op_c[i];
}
input[15] ^= 2;
mbedtls_aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
for (i = 0; i < 16; i++) {
out[i] ^= op_c[i];
}
@ -1196,7 +1196,7 @@ liblte_security_milenage_f2345(uint8* k, uint8* op_c, uint8* rand, uint8* res, u
input[(i + 8) % 16] = temp[i] ^ op_c[i];
}
input[15] ^= 4;
mbedtls_aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
aes_crypt_ecb(&ctx, AES_ENCRYPT, input, out);
for (i = 0; i < 16; i++) {
out[i] ^= op_c[i];
}

@ -242,4 +242,46 @@ uint8_t security_milenage_f5_star(uint8_t* k, uint8_t* op, uint8_t* rand, uint8_
return liblte_security_milenage_f5_star(k, op, rand, ak);
}
int security_xor_f2345(uint8_t* k, uint8_t* rand, uint8_t* res, uint8_t* ck, uint8_t* ik, uint8_t* ak)
{
uint8_t xdout[16];
uint8_t cdout[8];
// Use RAND and K to compute RES, CK, IK and AK
for (uint32_t i = 0; i < 16; i++) {
xdout[i] = k[i] ^ rand[i];
}
for (uint32_t i = 0; i < 16; i++) {
res[i] = xdout[i];
ck[i] = xdout[(i + 1) % 16];
ik[i] = xdout[(i + 2) % 16];
}
for (uint32_t i = 0; i < 6; i++) {
ak[i] = xdout[i + 3];
}
return SRSRAN_SUCCESS;
}
int security_xor_f1(uint8_t* k, uint8_t* rand, uint8_t* sqn, uint8_t* amf, uint8_t* mac_a)
{
uint8_t xdout[16];
uint8_t cdout[8];
// Use RAND and K to compute RES, CK, IK and AK
for (uint32_t i = 0; i < 16; i++) {
xdout[i] = k[i] ^ rand[i];
}
// Generate cdout
for (uint32_t i = 0; i < 6; i++) {
cdout[i] = sqn[i];
}
for (uint32_t i = 0; i < 2; i++) {
cdout[6 + i] = amf[i];
}
// Generate MAC
for (uint32_t i = 0; i < 8; i++) {
mac_a[i] = xdout[i] ^ cdout[i];
}
return SRSRAN_SUCCESS;
}
} // namespace srsran

@ -39,6 +39,10 @@ add_executable(test_f12345 test_f12345.cc)
target_link_libraries(test_f12345 srsran_common ${CMAKE_THREAD_LIBS_INIT})
add_test(test_f12345 test_f12345)
add_executable(test_security_kdf test_security_kdf.cc)
target_link_libraries(test_security_kdf srsran_common ${CMAKE_THREAD_LIBS_INIT})
add_test(test_security_kdf test_security_kdf)
add_executable(timeout_test timeout_test.cc)
target_link_libraries(timeout_test srsran_phy ${CMAKE_THREAD_LIBS_INIT})

@ -14,6 +14,7 @@
#include <stdlib.h>
#include "srsran/common/liblte_security.h"
#include "srsran/common/security.h"
#include "srsran/common/test_common.h"
/*
* Prototypes
@ -150,85 +151,69 @@ int test_set_2()
err_cmp = arrcmp(ak_star_o, ak_star, sizeof(ak_star));
TESTASSERT(err_cmp == 0);
return SRSRAN_SUCCESS;
;
}
int test_set_ksg()
/*
Own test sets
*/
int test_set_xor_own_set_1()
{
LIBLTE_ERROR_ENUM err_lte = LIBLTE_ERROR_INVALID_INPUTS;
int32 err_cmp = 0;
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_enb[] = {0xfe, 0x7d, 0xee, 0x80, 0x8d, 0x7f, 0x3b, 0x88, 0x2a, 0x08, 0x2c, 0xbd, 0xc8, 0x39, 0x0d, 0x12,
0x9e, 0x5d, 0x28, 0xaf, 0x0e, 0x83, 0x22, 0xeb, 0x57, 0x3a, 0xda, 0x36, 0xf2, 0x1a, 0x5a, 0x89};
uint8_t sk_gnb_o[32];
uint16_t scg_counter = 0;
err_lte = liblte_security_generate_sk_gnb(k_enb, sk_gnb_o, scg_counter);
TESTASSERT(err_lte == LIBLTE_SUCCESS);
arrprint(sk_gnb_o, sizeof(sk_gnb_o));
uint8_t sk_gnb[] = {0x45, 0xcb, 0xc3, 0xf8, 0xa8, 0x11, 0x93, 0xfd, 0x5c, 0x52, 0x29, 0x30, 0x0d, 0x59, 0xed, 0xf8,
0x12, 0xe9, 0x98, 0xa1, 0x15, 0xec, 0x4e, 0x0c, 0xe9, 0x03, 0xba, 0x89, 0x36, 0x7e, 0x26, 0x28};
err_cmp = arrcmp(sk_gnb_o, sk_gnb, sizeof(sk_gnb));
TESTASSERT(err_cmp == 0);
return SRSRAN_SUCCESS;
}
uint8_t k[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
uint8_t rand[] = {0xf9, 0x6a, 0xe3, 0x6e, 0x2d, 0x65, 0xfa, 0x84, 0x64, 0xc4, 0x98, 0xff, 0xc8, 0x30, 0x38, 0x0f};
int test_set_nr_rrc_up()
{
LIBLTE_ERROR_ENUM err_lte = LIBLTE_ERROR_INVALID_INPUTS;
int32 err_cmp = 0;
uint8_t res_o[16];
uint8_t ck_o[16];
uint8_t ik_o[16];
uint8_t ak_o[6];
uint8_t sk_gnb[] = {0x45, 0xcb, 0xc3, 0xf8, 0xa8, 0x11, 0x93, 0xfd, 0x5c, 0x52, 0x29, 0x30, 0x0d, 0x59, 0xed, 0xf8,
0x12, 0xe9, 0x98, 0xa1, 0x15, 0xec, 0x4e, 0x0c, 0xe9, 0x03, 0xba, 0x89, 0x36, 0x7e, 0x26, 0x28};
TESTASSERT(srsran::security_xor_f2345(k, rand, res_o, ck_o, ik_o, ak_o) == SRSRAN_SUCCESS);
uint8_t sk_gnb_o[32];
uint8_t k_rrc_enc_o[32];
uint8_t k_rrc_int_o[32];
uint8_t res[] = {0xf9, 0x7b, 0xc1, 0x5d, 0x69, 0x30, 0x9c, 0xf3};
uint8_t ck[] = {0x7b, 0xc1, 0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec, 0x5d, 0x32, 0x44, 0x04, 0xed, 0xd6, 0xf0, 0xf9};
uint8_t ik[] = {0xc1, 0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec, 0x5d, 0x32, 0x44, 0x04, 0xed, 0xd6, 0xf0, 0xf9, 0x7b};
uint8_t ak[] = {0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec};
err_lte = liblte_security_generate_k_nr_rrc(sk_gnb,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_128_EEA2,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_EIA0,
k_rrc_enc_o,
k_rrc_int_o);
logger.info(res_o, sizeof(res_o), "RES: ");
TESTASSERT(arrcmp(res_o, res, sizeof(res)) == 0);
TESTASSERT(err_lte == LIBLTE_SUCCESS);
printf("RRC ENC output:\n");
arrprint(&k_rrc_enc_o[0], sizeof(k_rrc_enc_o));
uint8_t k_rrc_enc[] = {0x52, 0xa9, 0x95, 0xdf, 0xf8, 0x9b, 0xc2, 0x94, 0xbd, 0x89, 0xff,
0xb1, 0x37, 0xa2, 0x9f, 0x24, 0x66, 0xa0, 0x9e, 0x99, 0x23, 0x86,
0xc8, 0xd1, 0xdf, 0x78, 0x92, 0x96, 0x4c, 0x6f, 0xb5, 0x22};
// CK
logger.info(ck_o, sizeof(ck_o), "CK: ");
TESTASSERT(arrcmp(ck_o, ck, sizeof(ck)) == 0);
err_cmp = arrcmp(k_rrc_enc_o, k_rrc_enc, sizeof(k_rrc_enc_o));
// IK
logger.info(ik_o, sizeof(ik_o), "IK: ");
TESTASSERT(arrcmp(ik_o, ik, sizeof(ik)) == 0);
TESTASSERT(err_cmp == 0);
// AK
logger.info(ak_o, sizeof(ak_o), "AK: ");
TESTASSERT(arrcmp(ak_o, ak, sizeof(ak)) == 0);
uint8_t k_up_enc_o[32];
uint8_t k_up_int_o[32];
uint8_t sqn[] = {0x00, 0x00, 0x00, 0x00, 0x12, 0xd9};
uint8_t amf[] = {0x90, 0x01};
uint8_t mac_o[8];
TESTASSERT(srsran::security_xor_f1(k, rand, sqn, amf, mac_o) == SRSRAN_SUCCESS);
err_lte = liblte_security_generate_k_nr_up(sk_gnb,
LIBLTE_SECURITY_CIPHERING_ALGORITHM_ID_128_EEA2,
LIBLTE_SECURITY_INTEGRITY_ALGORITHM_ID_EIA0,
k_up_enc_o,
k_up_int_o);
uint8_t mac[] = {0xf9, 0x7b, 0xc1, 0x5d, 0x7b, 0xe9, 0x0c, 0xf2};
uint8_t k_up_enc[] = {0x7c, 0xe2, 0x06, 0x70, 0xbb, 0xbc, 0xc5, 0x90, 0x40, 0x87, 0xc0, 0xd4, 0x26, 0x53, 0xc5, 0x40,
0x15, 0x20, 0x52, 0xd3, 0xdf, 0xbc, 0x3f, 0x05, 0x86, 0x9b, 0x7f, 0x92, 0x00, 0x95, 0xbe, 0x68};
printf("UP ENC output:\n");
arrprint(&k_up_enc_o[0], sizeof(k_up_enc_o));
// MAC
logger.info(mac_o, sizeof(mac_o), "MAC: ");
TESTASSERT(arrcmp(mac_o, mac, sizeof(mac)) == 0);
err_cmp = arrcmp(k_up_enc_o, k_up_enc, sizeof(k_up_enc_o));
TESTASSERT(err_cmp == 0);
return SRSRAN_SUCCESS;
}
/*
Own test sets
*/
int main(int argc, char* argv[])
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
logger.set_level(srslog::basic_levels::debug);
logger.set_hex_dump_max_size(128);
srslog::init();
TESTASSERT(test_set_2() == SRSRAN_SUCCESS);
TESTASSERT(test_set_ksg() == SRSRAN_SUCCESS);
TESTASSERT(test_set_nr_rrc_up() == SRSRAN_SUCCESS);
TESTASSERT(test_set_xor_own_set_1() == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}

@ -0,0 +1,257 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "srsran/common/bcd_helpers.h"
#include "srsran/common/common.h"
#include "srsran/common/security.h"
#include "srsran/common/test_common.h"
#include "srsran/srslog/srslog.h"
using namespace srsran;
int arrcmp(uint8_t const* const a, uint8_t const* const b, uint32_t len)
{
uint32_t i = 0;
for (i = 0; i < len; i++) {
if (a[i] != b[i]) {
return a[i] - b[i];
}
}
return SRSRAN_SUCCESS;
}
int test_set_ksg()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
int err_lte = SRSRAN_ERROR;
int err_cmp = SRSRAN_ERROR;
uint8_t k_enb[] = {0xfe, 0x7d, 0xee, 0x80, 0x8d, 0x7f, 0x3b, 0x88, 0x2a, 0x08, 0x2c, 0xbd, 0xc8, 0x39, 0x0d, 0x12,
0x9e, 0x5d, 0x28, 0xaf, 0x0e, 0x83, 0x22, 0xeb, 0x57, 0x3a, 0xda, 0x36, 0xf2, 0x1a, 0x5a, 0x89};
uint8_t sk_gnb_o[32];
uint16_t scg_counter = 0;
err_lte = srsran::security_generate_sk_gnb(k_enb, sk_gnb_o, scg_counter);
TESTASSERT(err_lte == SRSRAN_SUCCESS);
logger.info(&sk_gnb_o[0], sizeof(sk_gnb_o), "sk gnb o:");
uint8_t sk_gnb[] = {0x45, 0xcb, 0xc3, 0xf8, 0xa8, 0x11, 0x93, 0xfd, 0x5c, 0x52, 0x29, 0x30, 0x0d, 0x59, 0xed, 0xf8,
0x12, 0xe9, 0x98, 0xa1, 0x15, 0xec, 0x4e, 0x0c, 0xe9, 0x03, 0xba, 0x89, 0x36, 0x7e, 0x26, 0x28};
err_cmp = arrcmp(sk_gnb_o, sk_gnb, sizeof(sk_gnb));
TESTASSERT(err_cmp == 0);
return SRSRAN_SUCCESS;
}
int test_set_nr_rrc_up()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
int err_lte = SRSRAN_ERROR;
int err_cmp = SRSRAN_ERROR;
uint8_t sk_gnb[] = {0x45, 0xcb, 0xc3, 0xf8, 0xa8, 0x11, 0x93, 0xfd, 0x5c, 0x52, 0x29, 0x30, 0x0d, 0x59, 0xed, 0xf8,
0x12, 0xe9, 0x98, 0xa1, 0x15, 0xec, 0x4e, 0x0c, 0xe9, 0x03, 0xba, 0x89, 0x36, 0x7e, 0x26, 0x28};
uint8_t sk_gnb_o[32];
uint8_t k_rrc_enc_o[32];
uint8_t k_rrc_int_o[32];
err_lte = srsran::security_generate_k_nr_rrc(sk_gnb,
srsran::CIPHERING_ALGORITHM_ID_ENUM::CIPHERING_ALGORITHM_ID_128_EEA2,
srsran::INTEGRITY_ALGORITHM_ID_ENUM::INTEGRITY_ALGORITHM_ID_EIA0,
k_rrc_enc_o,
k_rrc_int_o);
TESTASSERT(err_lte == SRSRAN_SUCCESS);
logger.info(&k_rrc_enc_o[0], sizeof(k_rrc_enc_o), "RRC ENC output:");
uint8_t k_rrc_enc[] = {0x52, 0xa9, 0x95, 0xdf, 0xf8, 0x9b, 0xc2, 0x94, 0xbd, 0x89, 0xff,
0xb1, 0x37, 0xa2, 0x9f, 0x24, 0x66, 0xa0, 0x9e, 0x99, 0x23, 0x86,
0xc8, 0xd1, 0xdf, 0x78, 0x92, 0x96, 0x4c, 0x6f, 0xb5, 0x22};
err_cmp = arrcmp(k_rrc_enc_o, k_rrc_enc, sizeof(k_rrc_enc_o));
TESTASSERT(err_cmp == 0);
uint8_t k_up_enc_o[32];
uint8_t k_up_int_o[32];
err_lte = srsran::security_generate_k_nr_up(sk_gnb,
srsran::CIPHERING_ALGORITHM_ID_ENUM::CIPHERING_ALGORITHM_ID_128_EEA2,
srsran::INTEGRITY_ALGORITHM_ID_ENUM::INTEGRITY_ALGORITHM_ID_EIA0,
k_up_enc_o,
k_up_int_o);
uint8_t k_up_enc[] = {0x7c, 0xe2, 0x06, 0x70, 0xbb, 0xbc, 0xc5, 0x90, 0x40, 0x87, 0xc0, 0xd4, 0x26, 0x53, 0xc5, 0x40,
0x15, 0x20, 0x52, 0xd3, 0xdf, 0xbc, 0x3f, 0x05, 0x86, 0x9b, 0x7f, 0x92, 0x00, 0x95, 0xbe, 0x68};
logger.info(&k_up_enc_o[0], sizeof(k_up_enc_o), "UP ENC output:");
err_cmp = arrcmp(k_up_enc_o, k_up_enc, sizeof(k_up_enc_o));
TESTASSERT(err_cmp == 0);
return SRSRAN_SUCCESS;
}
int test_generate_k_asme()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_asme_o[32] = {};
uint8_t ck[] = {0x7b, 0xc1, 0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec, 0x5d, 0x32, 0x44, 0x04, 0xed, 0xd6, 0xf0, 0xf9};
uint8_t ik[] = {0xc1, 0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec, 0x5d, 0x32, 0x44, 0x04, 0xed, 0xd6, 0xf0, 0xf9, 0x7b};
uint8_t ak[] = {0x5d, 0x69, 0x30, 0x9c, 0xf3, 0xec};
uint8_t sqn[] = {0x00, 0x00, 0x00, 0x00, 0x12, 0xd9};
uint16_t mcc = 61441; // MCC 001
uint16_t mnc = 65281; // MNC 01
// Generate K_asme
security_generate_k_asme(ck, ik, ak, sqn, mcc, mnc, k_asme_o);
uint8_t k_asme[] = {0xd5, 0xef, 0x4d, 0x8f, 0x33, 0x26, 0x69, 0x02, 0x29, 0x5d, 0x42, 0xf3, 0x22, 0xa2, 0xf2, 0xcf,
0x11, 0xfb, 0x2c, 0xcc, 0x12, 0x4c, 0x09, 0xb4, 0xd8, 0x8d, 0x36, 0x15, 0x97, 0x03, 0x79, 0x90};
logger.info(k_asme_o, 32, "K_ASME output:");
TESTASSERT(arrcmp(k_asme, k_asme_o, sizeof(k_asme_o)) == 0);
return SRSRAN_SUCCESS;
}
int test_generate_k_nas()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_nas_enc_o[32];
uint8_t k_nas_int_o[32];
uint8_t k_asme[] = {0xd5, 0xef, 0x4d, 0x8f, 0x33, 0x26, 0x69, 0x02, 0x29, 0x5d, 0x42, 0xf3, 0x22, 0xa2, 0xf2, 0xcf,
0x11, 0xfb, 0x2c, 0xcc, 0x12, 0x4c, 0x09, 0xb4, 0xd8, 0x8d, 0x36, 0x15, 0x97, 0x03, 0x79, 0x90};
TESTASSERT(srsran::security_generate_k_nas(k_asme,
srsran::CIPHERING_ALGORITHM_ID_ENUM::CIPHERING_ALGORITHM_ID_EEA0,
srsran::INTEGRITY_ALGORITHM_ID_ENUM::INTEGRITY_ALGORITHM_ID_128_EIA1,
k_nas_enc_o,
k_nas_int_o) == SRSRAN_SUCCESS);
uint8_t k_nas_enc[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
logger.info(k_nas_enc_o, 32, "K NAS ENC output:");
TESTASSERT(arrcmp(k_nas_enc, k_nas_enc_o, sizeof(k_nas_enc_o)) == 0);
uint8_t k_nas_int[] = {0xb8, 0x55, 0x87, 0x1d, 0x17, 0xd4, 0xa7, 0x17, 0xe9, 0x31, 0xd9,
0xa6, 0x06, 0x9c, 0x6e, 0x54, 0xb7, 0x94, 0x08, 0xe2, 0x43, 0xdd,
0x36, 0x7d, 0xc8, 0xc6, 0x39, 0x22, 0x95, 0xb3, 0xb4, 0x51};
logger.info(k_nas_int_o, 32, "K NAS INT output:");
TESTASSERT(arrcmp(k_nas_int, k_nas_int_o, sizeof(k_nas_int_o)) == 0);
return SRSRAN_SUCCESS;
}
int test_generate_k_enb()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_enb_o[32];
uint8_t k_asme[] = {0x61, 0x44, 0xc6, 0x81, 0xd1, 0xbe, 0xa9, 0xda, 0xe1, 0xb8, 0xcf, 0x6c, 0xd1, 0x0a, 0x68, 0x63,
0x41, 0xdb, 0x80, 0x46, 0xa1, 0xe7, 0xa9, 0xab, 0x4d, 0x1e, 0xa0, 0xe3, 0x3c, 0x99, 0x4a, 0xc0};
uint32_t nas_ul_count = 0;
TESTASSERT(srsran::security_generate_k_enb(k_asme, nas_ul_count, k_enb_o) == SRSRAN_SUCCESS);
uint8_t k_enb[] = {0xc4, 0xc7, 0xbc, 0x79, 0x8a, 0xb9, 0x4e, 0x3d, 0x35, 0x4c, 0xd6, 0x60, 0x8e, 0x79, 0xaa, 0x92,
0xf5, 0x56, 0x9d, 0xf4, 0x65, 0x19, 0x50, 0x78, 0x50, 0x05, 0x1e, 0x36, 0xf0, 0x18, 0xca, 0x5f};
logger.info(k_enb, 32, "K ENB output:");
TESTASSERT(arrcmp(k_enb, k_enb_o, sizeof(k_enb_o)) == 0);
return SRSRAN_SUCCESS;
}
int test_generate_rrc_keys()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_rrc_enc_o[32];
uint8_t k_rrc_int_o[32];
uint8_t k_enb[] = {0xc4, 0xc7, 0xbc, 0x79, 0x8a, 0xb9, 0x4e, 0x3d, 0x35, 0x4c, 0xd6, 0x60, 0x8e, 0x79, 0xaa, 0x92,
0xf5, 0x56, 0x9d, 0xf4, 0x65, 0x19, 0x50, 0x78, 0x50, 0x05, 0x1e, 0x36, 0xf0, 0x18, 0xca, 0x5f};
TESTASSERT(srsran::security_generate_k_rrc(k_enb,
srsran::CIPHERING_ALGORITHM_ID_ENUM::CIPHERING_ALGORITHM_ID_EEA0,
srsran::INTEGRITY_ALGORITHM_ID_ENUM::INTEGRITY_ALGORITHM_ID_128_EIA2,
k_rrc_enc_o,
k_rrc_int_o) == SRSRAN_SUCCESS);
uint8_t k_rrc_enc[] = {0x23, 0xaf, 0xdd, 0x7b, 0x2e, 0x4a, 0x5a, 0x99, 0xc7, 0x78, 0x82,
0x78, 0x59, 0xcf, 0x45, 0x14, 0x86, 0xa2, 0x75, 0x78, 0x8b, 0x6f,
0x36, 0xa5, 0xb9, 0xb8, 0x10, 0xf5, 0xd4, 0x72, 0xa2, 0x4b};
logger.info(k_rrc_enc_o, 32, "K RRC ENC output:");
TESTASSERT(arrcmp(k_rrc_enc, k_rrc_enc_o, sizeof(k_rrc_enc_o)) == 0);
uint8_t k_rrc_int[] = {0x42, 0xf4, 0xf8, 0xc5, 0x85, 0xae, 0x89, 0x05, 0xa5, 0x0d, 0x0f,
0x32, 0xa9, 0x79, 0xd8, 0xb6, 0xfa, 0x1d, 0x6d, 0x19, 0x40, 0xf1,
0xd8, 0x79, 0xcf, 0x01, 0x89, 0x34, 0x2a, 0x8d, 0x73, 0xc2};
logger.info(k_rrc_int_o, 32, "K RRC INT output:");
TESTASSERT(arrcmp(k_rrc_int, k_rrc_int_o, sizeof(k_rrc_int_o)) == 0);
return SRSRAN_SUCCESS;
}
int test_generate_up_keys()
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
uint8_t k_up_enc_o[32];
uint8_t k_up_int_o[32];
uint8_t k_enb[] = {0xc4, 0xc7, 0xbc, 0x79, 0x8a, 0xb9, 0x4e, 0x3d, 0x35, 0x4c, 0xd6, 0x60, 0x8e, 0x79, 0xaa, 0x92,
0xf5, 0x56, 0x9d, 0xf4, 0x65, 0x19, 0x50, 0x78, 0x50, 0x05, 0x1e, 0x36, 0xf0, 0x18, 0xca, 0x5f};
TESTASSERT(srsran::security_generate_k_up(k_enb,
srsran::CIPHERING_ALGORITHM_ID_ENUM::CIPHERING_ALGORITHM_ID_EEA0,
srsran::INTEGRITY_ALGORITHM_ID_ENUM::INTEGRITY_ALGORITHM_ID_128_EIA2,
k_up_enc_o,
k_up_int_o) == SRSRAN_SUCCESS);
uint8_t k_up_enc[] = {0x22, 0xbf, 0xb5, 0x87, 0x61, 0xca, 0x1d, 0xd3, 0xb2, 0x0a, 0x28, 0x1c, 0x7e, 0xab, 0x0c, 0x0b,
0x9c, 0x3c, 0x92, 0xe1, 0xdd, 0xc0, 0xc8, 0xc5, 0x70, 0x6c, 0xbb, 0x8f, 0x95, 0x5e, 0x82, 0x63};
logger.info(k_up_enc_o, 32, "K UP ENC output:");
TESTASSERT(arrcmp(k_up_enc, k_up_enc_o, sizeof(k_up_enc_o)) == 0);
uint8_t k_up_int[] = {0x82, 0x0d, 0xcd, 0xf3, 0xb9, 0xc9, 0x4b, 0x32, 0xf8, 0x41, 0xc2, 0x5c, 0xc8, 0x78, 0xaa, 0x07,
0x77, 0x16, 0xc7, 0x83, 0xa5, 0x3f, 0xd3, 0xee, 0x58, 0x2f, 0xc5, 0x69, 0xe9, 0xc3, 0x3c, 0xa7};
logger.info(k_up_int_o, 32, "K UP INT output:");
TESTASSERT(arrcmp(k_up_int, k_up_int_o, sizeof(k_up_int_o)) == 0);
return SRSRAN_SUCCESS;
}
int main(int argc, char** argv)
{
auto& logger = srslog::fetch_basic_logger("LOG", false);
logger.set_level(srslog::basic_levels::debug);
logger.set_hex_dump_max_size(256);
srslog::init();
TESTASSERT(test_generate_k_asme() == SRSRAN_SUCCESS);
TESTASSERT(test_generate_k_nas() == SRSRAN_SUCCESS);
TESTASSERT(test_generate_k_enb() == SRSRAN_SUCCESS);
TESTASSERT(test_generate_rrc_keys() == SRSRAN_SUCCESS);
TESTASSERT(test_generate_up_keys() == SRSRAN_SUCCESS);
TESTASSERT(test_set_ksg() == SRSRAN_SUCCESS);
TESTASSERT(test_set_nr_rrc_up() == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}

@ -1080,6 +1080,7 @@ void nas::parse_authentication_request(uint32_t lcid, unique_byte_buffer_t pdu,
logger.debug(auth_req.autn, 16, "Authentication request AUTN");
auth_result_t auth_result =
usim->generate_authentication_response(auth_req.rand, auth_req.autn, mcc, mnc, res, &res_len, ctxt.k_asme);
logger.debug(res, res_len, "Authentication request RES");
if (LIBLTE_MME_TYPE_OF_SECURITY_CONTEXT_FLAG_NATIVE == auth_req.nas_ksi.tsc_flag) {
ctxt.ksi = auth_req.nas_ksi.nas_ksi;
} else {

@ -176,20 +176,15 @@ auth_result_t usim::gen_auth_res_xor(uint8_t* rand,
{
auth_result_t result = AUTH_OK;
uint8_t sqn[6];
uint8_t xdout[16];
uint8_t cdout[8];
uint8_t res_[16];
logger.debug(k, 16, "K:");
// Use RAND and K to compute RES, CK, IK and AK
for (uint32_t i = 0; i < 16; i++) {
xdout[i] = k[i] ^ rand[i];
}
for (uint32_t i = 0; i < 16; i++) {
res[i] = xdout[i];
ck[i] = xdout[(i + 1) % 16];
ik[i] = xdout[(i + 2) % 16];
}
for (uint32_t i = 0; i < 6; i++) {
ak[i] = xdout[i + 3];
security_xor_f2345(k, rand, res_, ck, ik, ak);
for (uint32_t i = 0; i < 8; i++) {
res[i] = res_[i];
}
*res_len = 8;
@ -203,18 +198,8 @@ auth_result_t usim::gen_auth_res_xor(uint8_t* rand,
amf[i] = autn_enb[6 + i];
}
// Generate cdout
for (uint32_t i = 0; i < 6; i++) {
cdout[i] = sqn[i];
}
for (uint32_t i = 0; i < 2; i++) {
cdout[6 + i] = amf[i];
}
// Generate MAC
for (uint32_t i = 0; i < 8; i++) {
mac[i] = xdout[i] ^ cdout[i];
}
security_xor_f1(k, rand, sqn, amf, mac);
// Construct AUTN
for (uint32_t i = 0; i < 6; i++) {
@ -234,6 +219,12 @@ auth_result_t usim::gen_auth_res_xor(uint8_t* rand,
}
}
logger.debug(ck, CK_LEN, "CK:");
logger.debug(ik, IK_LEN, "IK:");
logger.debug(ak, AK_LEN, "AK:");
logger.debug(sqn, 6, "sqn:");
logger.debug(amf, 2, "amf:");
logger.debug(mac, 8, "mac:");
// Generate K_asme
security_generate_k_asme(ck, ik, ak, sqn, mcc, mnc, k_asme_);

Loading…
Cancel
Save