You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
8.8 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "channel_mapping.h"
#include "radio_metrics.h"
#include "rf_buffer.h"
#include "rf_timestamp.h"
#include "srsran/common/interfaces_common.h"
#include "srsran/interfaces/radio_interfaces.h"
#include "srsran/phy/resampling/resampler.h"
#include "srsran/phy/rf/rf.h"
#include "srsran/radio/radio_base.h"
#include "srsran/srslog/srslog.h"
#include "srsran/srsran.h"
#include <list>
#include <string>
#ifndef SRSRAN_RADIO_H
#define SRSRAN_RADIO_H
namespace srsran {
/**
* Implementation of the radio interface for the PHY
*
* It uses the rf C library object to access the underlying radio. This implementation uses a flat array to
* transmit/receive samples for all RF channels. The N carriers and P antennas are mapped into M=NP RF channels (M <=
* SRSRAN_MAX_CHANNELS). Note that all carriers must have the same number of antennas.
*
* The underlying radio receives and transmits M RF channels synchronously from possibly multiple radios using the same
* rf driver object. In the current implementation, the mapping between N carriers and P antennas is sequentially, eg:
* [carrier_0_port_0, carrier_0_port_1, carrier_1_port_0, carrier_1_port_1, ..., carrier_N_port_N]
*/
class radio : public radio_interface_phy, public srsran::radio_base
{
public:
radio();
~radio();
int init(const rf_args_t& args_, phy_interface_radio* phy_) final;
void stop() final;
std::string get_type() override { return "radio"; }
// ==== PHY interface ===
// trx functions
void tx_end() override;
bool tx(rf_buffer_interface& buffer, const rf_timestamp_interface& tx_time) override;
bool rx_now(rf_buffer_interface& buffer, rf_timestamp_interface& rxd_time) override;
// setter
void set_tx_freq(const uint32_t& carrier_idx, const double& freq) override;
void set_rx_freq(const uint32_t& carrier_idx, const double& freq) override;
void release_freq(const uint32_t& carrier_idx) override;
void set_tx_gain(const float& gain) override;
void set_rx_gain_th(const float& gain) override;
void set_rx_gain(const float& gain) override;
void set_tx_srate(const double& srate) override;
void set_rx_srate(const double& srate) override;
void set_channel_rx_offset(uint32_t ch, int32_t offset_samples) override;
// getter
double get_freq_offset() override;
float get_rx_gain() override;
bool is_continuous_tx() override;
bool get_is_start_of_burst() override;
bool is_init() override;
void reset() override;
srsran_rf_info_t* get_info() override;
// Other functions
bool get_metrics(rf_metrics_t* metrics) final;
void handle_rf_msg(srsran_rf_error_t error);
static void rf_msg_callback(void* arg, srsran_rf_error_t error);
private:
std::vector<srsran_rf_t> rf_devices = {};
std::vector<srsran_rf_info_t> rf_info = {};
std::vector<int32_t> rx_offset_n = {};
rf_metrics_t rf_metrics = {};
std::mutex metrics_mutex;
srslog::basic_logger& logger = srslog::fetch_basic_logger("RF", false);
phy_interface_radio* phy = nullptr;
std::vector<cf_t> zeros;
std::array<std::vector<cf_t>, SRSRAN_MAX_CHANNELS> dummy_buffers;
std::mutex tx_mutex;
std::mutex rx_mutex;
std::array<std::vector<cf_t>, SRSRAN_MAX_CHANNELS> tx_buffer;
std::array<std::vector<cf_t>, SRSRAN_MAX_CHANNELS> rx_buffer;
std::array<srsran_resampler_fft_t, SRSRAN_MAX_CHANNELS> interpolators = {};
std::array<srsran_resampler_fft_t, SRSRAN_MAX_CHANNELS> decimators = {};
std::atomic<bool> decimator_busy = {false}; ///< Indicates the decimator is changing the rate
rf_timestamp_t end_of_burst_time = {};
std::atomic<bool> is_start_of_burst{false};
uint32_t tx_adv_nsamples = 0;
double tx_adv_sec = 0.0; // Transmission time advance to compensate for antenna->timestamp delay
bool tx_adv_auto = false;
bool tx_adv_negative = false;
bool is_initialized = false;
bool radio_is_streaming = false;
bool continuous_tx = false;
double freq_offset = 0.0;
double cur_tx_srate = 0.0;
double cur_rx_srate = 0.0;
double fix_srate_hz = 0.0;
uint32_t nof_antennas = 0;
uint32_t nof_channels = 0;
uint32_t nof_channels_x_dev = 0;
uint32_t nof_carriers = 0;
std::vector<double> cur_tx_freqs = {};
std::vector<double> cur_rx_freqs = {};
constexpr static const uint32_t max_resamp_buf_sz_ms = 5; ///< Maximum buffer size in ms for intermediate resampling
///< buffers
constexpr static double tx_max_gap_zeros = 4e-3; ///< Maximum transmission gap to fill with zeros, otherwise the burst
///< shall be stopped
// Define default values for known radios
constexpr static int uhd_default_tx_adv_samples = 98;
constexpr static double uhd_default_tx_adv_offset_sec = 4 * 1e-6;
constexpr static int lime_default_tx_adv_samples = 98;
constexpr static double lime_default_tx_adv_offset_sec = 4 * 1e-6;
constexpr static int blade_default_tx_adv_samples = 27;
constexpr static double blade_default_tx_adv_offset_sec = 1e-6;
/**
* Get device calibrated transmit time in advanced seconds
* @param device_name actual device name
* @return transmit time in advanced in seconds
*/
double get_dev_cal_tx_adv_sec(const std::string& device_name);
channel_mapping rx_channel_mapping = {}, tx_channel_mapping = {};
/**
* Helper method for opening a RF device
*
* @param device_idx Device index
* @param device_name Device name
* @param devive_args Device arguments
* @return it returns true if the device was opened successful, otherwise it returns false
*/
bool open_dev(const uint32_t& device_idx, const std::string& device_name, const std::string& devive_args);
/**
* Helper method for transmitting over a single RF device. This function maps automatically the logical transmit
* buffers to the physical RF buffers for the given device.
*
* Also, it takes care internally of transmission gaps and overlaps. So, it applies time compensation per channel
* basis.
*
* @param device_idx Device index
* @param buffer Common transmit buffer
* @param nof_samples_ number of samples to transmit
* @param tx_time_ Timestamp to transmit (read only)
* @return it returns true if the transmission was successful, otherwise it returns false
*/
bool tx_dev(const uint32_t& device_idx, rf_buffer_interface& buffer, const srsran_timestamp_t& tx_time_);
// private unprotected tx_end implementation
void tx_end_nolock();
/**
* Helper method for receiving over a single RF device. This function maps automatically the logical receive buffers
* to the physical RF buffers for the given device.
*
* @param device_idx Device index
* @param buffer Common receive buffers
* @param rxd_time Points at the receive time (write only)
* @return it returns true if the reception was successful, otherwise it returns false
*/
bool rx_dev(const uint32_t& device_idx, const rf_buffer_interface& buffer, srsran_timestamp_t* rxd_time);
/**
* Helper method for mapping logical channels into physical radio buffers.
*
* @param map Channel mapping, it can be either Tx or Rx mapping
* @param device_idx RF Device index for the buffer mapping
* @param sample_offset The physical radio buffer pointer offset
* @param buffer Logical channels buffer
* @param radio_buffers Actual physical radio buffer
* @return It returns true if the mapping was successful, otherwise it returns false.
*/
bool map_channels(const channel_mapping& map,
uint32_t device_idx,
uint32_t sample_offset,
const rf_buffer_interface& buffer,
void* radio_buffers[SRSRAN_MAX_CHANNELS]);
bool start_agc(bool tx_gain_same_rx = false);
void set_tx_adv(int nsamples);
void set_tx_adv_neg(bool tx_adv_is_neg);
bool config_rf_channels(const rf_args_t& args);
};
} // namespace srsran
#endif // SRSRAN_RADIO_H