You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

164 lines
3.9 KiB
C

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_SYNC_STATE_H
#define SRSUE_SYNC_STATE_H
namespace srsue {
class sync_state
{
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state()
{
std::lock_guard<std::mutex> lock(inside);
cur_state = next_state;
if (state_setting) {
state_setting = false;
state_running = true;
}
cvar.notify_all();
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true)
{
std::lock_guard<std::mutex> lock(inside);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
state_running = false;
cvar.notify_all();
}
void force_sfn_sync()
{
std::lock_guard<std::mutex> lock(inside);
next_state = SFN_SYNC;
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle()
{
std::lock_guard<std::mutex> lock(outside);
// Do not wait when transitioning to IDLE to avoid blocking
go_state_nowait(IDLE);
}
void run_cell_search()
{
std::lock_guard<std::mutex> lock(outside);
go_state(CELL_SEARCH);
wait_state_run();
wait_state_next();
}
void run_sfn_sync()
{
std::lock_guard<std::mutex> lock(outside);
go_state(SFN_SYNC);
wait_state_run();
wait_state_next();
}
/* Helpers below this */
bool is_idle() { return cur_state == IDLE; }
bool is_camping() { return cur_state == CAMPING; }
const char* to_string()
{
switch (cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() = default;
private:
void go_state(state_t s)
{
std::unique_lock<std::mutex> ul(inside);
next_state = s;
state_setting = true;
while (state_setting) {
cvar.wait(ul);
}
}
void go_state_nowait(state_t s)
{
std::unique_lock<std::mutex> ul(inside);
next_state = s;
state_setting = true;
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_run()
{
std::unique_lock<std::mutex> ul(inside);
while (state_running) {
cvar.wait(ul);
}
}
void wait_state_next()
{
std::unique_lock<std::mutex> ul(inside);
while (cur_state != next_state) {
cvar.wait(ul);
}
}
bool state_running = false;
bool state_setting = false;
state_t cur_state = IDLE;
state_t next_state = IDLE;
std::mutex inside;
std::mutex outside;
std::condition_variable cvar;
};
}; // namespace srsue
#endif // SRSUE_SYNC_STATE_H