You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

437 lines
17 KiB
C

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSENB_RRC_H
#define SRSENB_RRC_H
#include "rrc_metrics.h"
#include "srsenb/hdr/stack/upper/common_enb.h"
#include "srslte/asn1/rrc_asn1.h"
#include "srslte/common/block_queue.h"
#include "srslte/common/buffer_pool.h"
#include "srslte/common/common.h"
#include "srslte/common/log.h"
#include "srslte/common/stack_procedure.h"
#include "srslte/common/timeout.h"
#include "srslte/interfaces/enb_interfaces.h"
#include <map>
#include <queue>
namespace srsenb {
struct rrc_cfg_sr_t {
uint32_t period;
asn1::rrc::sched_request_cfg_c::setup_s_::dsr_trans_max_e_ dsr_max;
uint32_t nof_prb;
uint32_t sf_mapping[80];
uint32_t nof_subframes;
};
enum rrc_cfg_cqi_mode_t { RRC_CFG_CQI_MODE_PERIODIC = 0, RRC_CFG_CQI_MODE_APERIODIC, RRC_CFG_CQI_MODE_N_ITEMS };
static const char rrc_cfg_cqi_mode_text[RRC_CFG_CQI_MODE_N_ITEMS][20] = {"periodic", "aperiodic"};
typedef struct {
uint32_t sf_mapping[80];
uint32_t nof_subframes;
uint32_t nof_prb;
uint32_t period;
uint32_t m_ri;
bool simultaneousAckCQI;
rrc_cfg_cqi_mode_t mode;
} rrc_cfg_cqi_t;
typedef struct {
bool configured;
asn1::rrc::lc_ch_cfg_s::ul_specific_params_s_ lc_cfg;
asn1::rrc::pdcp_cfg_s pdcp_cfg;
asn1::rrc::rlc_cfg_c rlc_cfg;
} rrc_cfg_qci_t;
//! Cell to measure for HO. Filled by cfg file parser.
struct meas_cell_cfg_t {
uint32_t earfcn;
uint16_t pci;
uint32_t eci;
float q_offset;
};
// neigh measurement Cell info
struct rrc_meas_cfg_t {
std::vector<meas_cell_cfg_t> meas_cells;
std::vector<asn1::rrc::report_cfg_eutra_s> meas_reports;
asn1::rrc::quant_cfg_eutra_s quant_cfg;
// uint32_t nof_meas_ids;
// srslte::rrc_meas_id_t meas_ids[LIBLTE_RRC_MAX_MEAS_ID];
// TODO: Add blacklist cells
// TODO: Add multiple meas configs
};
#define MAX_NOF_QCI 10
struct rrc_cfg_t {
uint32_t enb_id; ///< Required to pack SIB1
// Per eNB SIBs
asn1::rrc::sib_type1_s sib1;
asn1::rrc::sib_info_item_c sibs[ASN1_RRC_MAX_SIB];
asn1::rrc::mac_main_cfg_s mac_cnfg;
asn1::rrc::pusch_cfg_ded_s pusch_cfg;
asn1::rrc::ant_info_ded_s antenna_info;
asn1::rrc::pdsch_cfg_ded_s::p_a_e_ pdsch_cfg;
rrc_cfg_sr_t sr_cfg;
rrc_cfg_cqi_t cqi_cfg;
rrc_cfg_qci_t qci_cfg[MAX_NOF_QCI];
bool enable_mbsfn;
uint32_t inactivity_timeout_ms;
srslte::CIPHERING_ALGORITHM_ID_ENUM eea_preference_list[srslte::CIPHERING_ALGORITHM_ID_N_ITEMS];
srslte::INTEGRITY_ALGORITHM_ID_ENUM eia_preference_list[srslte::INTEGRITY_ALGORITHM_ID_N_ITEMS];
bool meas_cfg_present = false;
rrc_meas_cfg_t meas_cfg;
srslte_cell_t cell;
cell_list_t cell_list;
};
static const char rrc_state_text[RRC_STATE_N_ITEMS][100] = {"IDLE",
"WAIT FOR CON SETUP COMPLETE",
"WAIT FOR SECURITY MODE COMPLETE",
"WAIT FOR UE CAPABILITIY INFORMATION",
"WAIT FOR CON RECONF COMPLETE",
"RRC CONNECTED",
"RELEASE REQUEST"};
class rrc final : public rrc_interface_pdcp,
public rrc_interface_mac,
public rrc_interface_rlc,
public rrc_interface_s1ap
{
public:
rrc();
~rrc();
void init(const rrc_cfg_t& cfg_,
phy_interface_rrc_lte* phy,
mac_interface_rrc* mac,
rlc_interface_rrc* rlc,
pdcp_interface_rrc* pdcp,
s1ap_interface_rrc* s1ap,
gtpu_interface_rrc* gtpu,
srslte::timer_handler* timers_,
srslte::log* log_rrc);
void stop();
void get_metrics(rrc_metrics_t& m);
void tti_clock();
// rrc_interface_mac
void rl_failure(uint16_t rnti) override;
void add_user(uint16_t rnti, const sched_interface::ue_cfg_t& init_ue_cfg) override;
void upd_user(uint16_t new_rnti, uint16_t old_rnti) override;
void set_activity_user(uint16_t rnti) override;
bool is_paging_opportunity(uint32_t tti, uint32_t* payload_len) override;
uint8_t* read_pdu_bcch_dlsch(const uint8_t cc_idx, const uint32_t sib_index) override;
// rrc_interface_rlc
void read_pdu_pcch(uint8_t* payload, uint32_t buffer_size) override;
void max_retx_attempted(uint16_t rnti) override;
// rrc_interface_s1ap
void write_dl_info(uint16_t rnti, srslte::unique_byte_buffer_t sdu) override;
void release_complete(uint16_t rnti) override;
bool setup_ue_ctxt(uint16_t rnti, const asn1::s1ap::init_context_setup_request_s& msg) override;
bool modify_ue_ctxt(uint16_t rnti, const asn1::s1ap::ue_context_mod_request_s& msg) override;
bool setup_ue_erabs(uint16_t rnti, const asn1::s1ap::erab_setup_request_s& msg) override;
bool release_erabs(uint32_t rnti) override;
void add_paging_id(uint32_t ueid, const asn1::s1ap::ue_paging_id_c& UEPagingID) override;
void ho_preparation_complete(uint16_t rnti, bool is_success, srslte::unique_byte_buffer_t rrc_container) override;
// rrc_interface_pdcp
void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu) override;
uint32_t get_nof_users();
// logging
typedef enum { Rx = 0, Tx } direction_t;
template <class T>
void log_rrc_message(const std::string& source,
direction_t dir,
const srslte::byte_buffer_t* pdu,
const T& msg,
const std::string& msg_type);
class ue
{
public:
class rrc_mobility;
ue(rrc* outer_rrc, uint16_t rnti, const sched_interface::ue_cfg_t& ue_cfg);
bool is_connected();
bool is_idle();
typedef enum {
MSG3_RX_TIMEOUT = 0, ///< Msg3 has its own timeout to quickly remove fake UEs from random PRACHs
UE_RESPONSE_RX_TIMEOUT, ///< General purpose timeout for responses to eNB requests
UE_INACTIVITY_TIMEOUT, ///< UE inactivity timeout
nulltype
} activity_timeout_type_t;
std::string to_string(const activity_timeout_type_t& type);
void set_activity_timeout(const activity_timeout_type_t type);
void set_activity();
void activity_timer_expired();
uint32_t rl_failure();
rrc_state_t get_state();
void send_connection_setup(bool is_setup = true);
void send_connection_reest();
void send_connection_reject();
void send_connection_release();
void send_connection_reest_rej();
void send_connection_reconf(srslte::unique_byte_buffer_t sdu);
void send_connection_reconf_new_bearer(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e);
void send_connection_reconf_upd(srslte::unique_byte_buffer_t pdu);
void send_security_mode_command();
void send_ue_cap_enquiry();
void parse_ul_dcch(uint32_t lcid, srslte::unique_byte_buffer_t pdu);
void handle_rrc_con_req(asn1::rrc::rrc_conn_request_s* msg);
void handle_rrc_con_reest_req(asn1::rrc::rrc_conn_reest_request_r8_ies_s* msg);
void handle_rrc_con_setup_complete(asn1::rrc::rrc_conn_setup_complete_s* msg, srslte::unique_byte_buffer_t pdu);
void handle_rrc_reconf_complete(asn1::rrc::rrc_conn_recfg_complete_s* msg, srslte::unique_byte_buffer_t pdu);
void handle_security_mode_complete(asn1::rrc::security_mode_complete_s* msg);
void handle_security_mode_failure(asn1::rrc::security_mode_fail_s* msg);
bool handle_ue_cap_info(asn1::rrc::ue_cap_info_s* msg);
void set_bitrates(const asn1::s1ap::ue_aggregate_maximum_bitrate_s& rates);
void set_security_capabilities(const asn1::s1ap::ue_security_cap_s& caps);
void set_security_key(const asn1::fixed_bitstring<256, false, true>& key);
bool setup_erabs(const asn1::s1ap::erab_to_be_setup_list_ctxt_su_req_l& e);
bool setup_erabs(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e);
void setup_erab(uint8_t id,
const asn1::s1ap::erab_level_qos_params_s& qos,
const asn1::bounded_bitstring<1, 160, true, true>& addr,
uint32_t teid_out,
const asn1::unbounded_octstring<true>* nas_pdu);
bool release_erabs();
// handover
void handle_ho_preparation_complete(bool is_success, srslte::unique_byte_buffer_t container);
void notify_s1ap_ue_ctxt_setup_complete();
void notify_s1ap_ue_erab_setup_response(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e);
int sr_allocate(uint32_t period, uint8_t* I_sr, uint16_t* N_pucch_sr);
void sr_get(uint8_t* I_sr, uint16_t* N_pucch_sr);
int sr_free();
int cqi_allocate(uint32_t period, uint16_t* pmi_idx, uint16_t* n_pucch);
void cqi_get(uint16_t* pmi_idx, uint16_t* n_pucch);
int cqi_free();
int ri_get(uint32_t m_ri, uint16_t* ri_idx);
bool select_security_algorithms();
void send_dl_ccch(asn1::rrc::dl_ccch_msg_s* dl_ccch_msg);
void send_dl_dcch(asn1::rrc::dl_dcch_msg_s* dl_dcch_msg,
srslte::unique_byte_buffer_t pdu = srslte::unique_byte_buffer_t());
uint16_t rnti = 0;
rrc* parent = nullptr;
bool connect_notified = false;
bool is_csfb = false;
private:
// args
srslte::byte_buffer_pool* pool = nullptr;
srslte::timer_handler::unique_timer activity_timer;
// cached for ease of context transfer
asn1::rrc::rrc_conn_recfg_s last_rrc_conn_recfg;
asn1::rrc::security_algorithm_cfg_s last_security_mode_cmd;
asn1::rrc::establishment_cause_e establishment_cause;
std::unique_ptr<rrc_mobility> mobility_handler;
// S-TMSI for this UE
bool has_tmsi = false;
uint32_t m_tmsi = 0;
uint8_t mmec = 0;
// state
sched_interface::ue_cfg_t current_sched_ue_cfg = {};
uint32_t rlf_cnt = 0;
uint8_t transaction_id = 0;
rrc_state_t state = RRC_STATE_IDLE;
std::map<uint32_t, asn1::rrc::srb_to_add_mod_s> srbs;
std::map<uint32_t, asn1::rrc::drb_to_add_mod_s> drbs;
uint8_t k_enb[32]; // Provided by MME
uint8_t k_rrc_enc[32];
uint8_t k_rrc_int[32];
uint8_t k_up_enc[32];
uint8_t k_up_int[32]; // Not used: only for relay nodes (3GPP 33.401 Annex A.7)
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo;
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo;
asn1::s1ap::ue_aggregate_maximum_bitrate_s bitrates;
asn1::s1ap::ue_security_cap_s security_capabilities;
bool eutra_capabilities_unpacked = false;
asn1::rrc::ue_eutra_cap_s eutra_capabilities;
typedef struct {
uint8_t id;
asn1::s1ap::erab_level_qos_params_s qos_params;
asn1::bounded_bitstring<1, 160, true, true> address;
uint32_t teid_out;
uint32_t teid_in;
} erab_t;
std::map<uint8_t, erab_t> erabs;
int sr_sched_sf_idx = 0;
int sr_sched_prb_idx = 0;
bool sr_allocated = false;
uint32_t sr_N_pucch = 0;
uint32_t sr_I = 0;
uint32_t cqi_pucch = 0;
uint32_t cqi_idx = 0;
bool cqi_allocated = false;
int cqi_sched_sf_idx = 0;
int cqi_sched_prb_idx = 0;
int get_drbid_config(asn1::rrc::drb_to_add_mod_s* drb, int drbid);
bool nas_pending = false;
srslte::byte_buffer_t erab_info;
///< UE's Physical layer dedicated configuration
phy_interface_rrc_lte::phy_rrc_dedicated_list_t phy_rrc_dedicated_list = {};
/**
* Setups the PCell physical layer common configuration of the UE from the SIB2 message. This methods is designed to
* be called from the constructor.
*
* @param config ASN1 Common SIB struct carrying the common physical layer parameters
*/
void apply_setup_phy_common(const asn1::rrc::rr_cfg_common_sib_s& config);
/**
* Setups the PCell physical layer dedicated configuration of the UE. This method shall be called from the
* connection setup only.
*
* @param phys_cfg_ded ASN1 Physical layer configuration dedicated
*/
void apply_setup_phy_config_dedicated(const asn1::rrc::phys_cfg_ded_s& phys_cfg_ded);
/**
* Reconfigures the PCell and SCell physical layer dedicated configuration of the UE. This method shall be called
* from the connection reconfiguration. `apply_setup_phy_config` shall not be called before/after. It automatically
* parses the PCell and SCell reconfiguration.
*
* @param reconfig_r8 ASN1 reconfiguration message
*/
void apply_reconf_phy_config(const asn1::rrc::rrc_conn_recfg_r8_ies_s& reconfig_r8);
}; // class ue
private:
// args
srslte::timer_handler* timers = nullptr;
srslte::byte_buffer_pool* pool = nullptr;
phy_interface_rrc_lte* phy = nullptr;
mac_interface_rrc* mac = nullptr;
rlc_interface_rrc* rlc = nullptr;
pdcp_interface_rrc* pdcp = nullptr;
gtpu_interface_rrc* gtpu = nullptr;
s1ap_interface_rrc* s1ap = nullptr;
srslte::log* rrc_log = nullptr;
// state
std::map<uint16_t, std::unique_ptr<ue> > users; // NOTE: has to have fixed addr
std::map<uint32_t, asn1::s1ap::ue_paging_id_c> pending_paging;
std::map<uint8_t, std::vector<srslte::unique_byte_buffer_t> > sib_buffer; ///< Packed SIBs for each CC
void process_release_complete(uint16_t rnti);
void process_rl_failure(uint16_t rnti);
void rem_user(uint16_t rnti);
uint32_t generate_sibs();
void configure_mbsfn_sibs(asn1::rrc::sib_type2_s* sib2, asn1::rrc::sib_type13_r9_s* sib13);
void config_mac();
void parse_ul_dcch(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu);
void parse_ul_ccch(uint16_t rnti, srslte::unique_byte_buffer_t pdu);
void configure_security(uint16_t rnti,
uint32_t lcid,
uint8_t* k_rrc_enc,
uint8_t* k_rrc_int,
uint8_t* k_up_enc,
uint8_t* k_up_int,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo);
void enable_integrity(uint16_t rnti, uint32_t lcid);
void enable_encryption(uint16_t rnti, uint32_t lcid);
srslte::byte_buffer_t byte_buf_paging;
typedef struct {
uint16_t rnti;
uint32_t lcid;
srslte::unique_byte_buffer_t pdu;
} rrc_pdu;
const static uint32_t LCID_EXIT = 0xffff0000;
const static uint32_t LCID_REM_USER = 0xffff0001;
const static uint32_t LCID_REL_USER = 0xffff0002;
const static uint32_t LCID_RLF_USER = 0xffff0003;
const static uint32_t LCID_ACT_USER = 0xffff0004;
bool running = false;
static const int RRC_THREAD_PRIO = 65;
srslte::block_queue<rrc_pdu> rx_pdu_queue;
struct sr_sched_t {
uint32_t nof_users[100][80];
};
sr_sched_t sr_sched = {};
sr_sched_t cqi_sched = {};
asn1::rrc::mcch_msg_s mcch;
bool enable_mbms = false;
rrc_cfg_t cfg = {};
uint32_t nof_si_messages = 0;
asn1::rrc::sib_type2_s sib2;
asn1::rrc::sib_type7_s sib7;
class mobility_cfg;
std::unique_ptr<mobility_cfg> enb_mobility_cfg;
void rem_user_thread(uint16_t rnti);
pthread_mutex_t user_mutex;
pthread_mutex_t paging_mutex;
};
} // namespace srsenb
#endif // SRSENB_RRC_H