You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

340 lines
8.7 KiB
C

/* Adapted Phil Karn's r=1/3 k=9 viterbi decoder to r=1/3 k=7
*
* K=15 r=1/6 Viterbi decoder for x86 SSE2
* Copyright Mar 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <memory.h>
#include <limits.h>
#include "parity.h"
//#define DEBUG
#ifdef LV_HAVE_SSE
#include <emmintrin.h>
#include <tmmintrin.h>
#include <immintrin.h>
#include <emmintrin.h>
#define _mm256_set_m128i(v0, v1) _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1)
#define _mm256_setr_m128i(v0, v1) _mm256_set_m128i((v1), (v0))
typedef union {
unsigned char c[64];
__m128i v[4];
} metric_t;
typedef union {
unsigned int w[2];
unsigned char c[8];
unsigned short s[4];
__m64 v;
} decision_t;
union branchtab27 {
unsigned char c[32];
__m256i v;
} Branchtab37_sse2[3];
int firstGo;
/* State info for instance of Viterbi decoder */
struct v37 {
metric_t metrics1; /* path metric buffer 1 */
metric_t metrics2; /* path metric buffer 2 */
decision_t *dp; /* Pointer to current decision */
metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */
decision_t *decisions; /* Beginning of decisions for block */
uint32_t len;
};
void set_viterbi37_polynomial_avx2(int polys[3]) {
int state;
for(state=0;state < 32;state++){
Branchtab37_sse2[0].c[state] = (polys[0] < 0) ^ parity((2*state) & polys[0]) ? 255:0;
Branchtab37_sse2[1].c[state] = (polys[1] < 0) ^ parity((2*state) & polys[1]) ? 255:0;
Branchtab37_sse2[2].c[state] = (polys[2] < 0) ^ parity((2*state) & polys[2]) ? 255:0;
}
}
void clear_v37_avx2(struct v37 *vp) {
bzero(vp->decisions, sizeof(decision_t)*vp->len);
vp->dp = NULL;
bzero(&vp->metrics1, sizeof(metric_t));
bzero(&vp->metrics2, sizeof(metric_t));
vp->old_metrics = NULL;
vp->new_metrics = NULL;
}
/* Initialize Viterbi decoder for start of new frame */
int init_viterbi37_avx2(void *p, int starting_state) {
struct v37 *vp = p;
uint32_t i;
firstGo = 1;
for(i=0;i<64;i++)
vp->metrics1.c[i] = 63;
clear_v37_avx2(vp);
vp->old_metrics = &vp->metrics1;
vp->new_metrics = &vp->metrics2;
vp->dp = vp->decisions;
if (starting_state != -1) {
vp->old_metrics->c[starting_state & 63] = 0; /* Bias known start state */
}
return 0;
}
/* Create a new instance of a Viterbi decoder */
void *create_viterbi37_avx2(int polys[3], uint32_t len) {
void *p;
struct v37 *vp;
set_viterbi37_polynomial_avx2(polys);
/* Ordinary malloc() only returns 8-byte alignment, we need 16 */
if(posix_memalign(&p, sizeof(__m128i),sizeof(struct v37)))
return NULL;
vp = (struct v37 *)p;
if(posix_memalign(&p, sizeof(__m128i),(len+6)*sizeof(decision_t))) {
free(vp);
return NULL;
}
vp->decisions = (decision_t *)p;
vp->len = len+6;
return vp;
}
/* Viterbi chainback */
int chainback_viterbi37_avx2(
void *p,
uint8_t *data, /* Decoded output data */
uint32_t nbits, /* Number of data bits */
uint32_t endstate) { /* Terminal encoder state */
struct v37 *vp = p;
if (p == NULL)
return -1;
decision_t *d = (decision_t *)vp->decisions;
/* Make room beyond the end of the encoder register so we can
* accumulate a full byte of decoded data
*/
endstate %= 64;
endstate <<= 2;
/* The store into data[] only needs to be done every 8 bits.
* But this avoids a conditional branch, and the writes will
* combine in the cache anyway
*/
d += 6; /* Look past tail */
while(nbits--) {
int k;
k = (d[nbits].c[(endstate>>2)/8] >> ((endstate>>2)%8)) & 1;
endstate = (endstate >> 1) | (k << 7);
data[nbits] = k;
//printf("nbits=%d, endstate=%3d, k=%d, w[0]=%d, w[1]=%d, c=%d\n", nbits, endstate, k, d[nbits].s[1]&1, d[nbits].s[2]&1, d[nbits].c[(endstate>>2)/8]&1);
}
return 0;
}
/* Delete instance of a Viterbi decoder */
void delete_viterbi37_avx2(void *p){
struct v37 *vp = p;
if(vp != NULL){
free(vp->decisions);
free(vp);
}
}
void printer_256i(char *s, __m256i val) {
printf("%s: ", s);
uint8_t *x = (uint8_t*) &val;
for (int i=0;i<32;i++) {
printf("%3d, ", x[i]);
}
printf("\n");
}
void printer_128i(char *s, __m128i val) {
printf("%s: ", s);
uint8_t *x = (uint8_t*) &val;
for (int i=0;i<16;i++) {
printf("%3d, ", x[i]);
}
printf("\n");
}
void printer_m64(char *s, __m64 val) {
printf("%s: ", s);
uint8_t *x = (uint8_t*) &val;
for (int i=0;i<8;i++) {
printf("%3d, ", x[i]);
}
printf("\n");
}
void update_viterbi37_blk_avx2(void *p,unsigned char *syms,int nbits, uint32_t *best_state) {
struct v37 *vp = p;
decision_t *d;
if(p == NULL)
return;
#ifdef DEBUG
printf("[");
#endif
d = (decision_t *) vp->dp;
for (int s=0;s<nbits;s++) {
memset(d+s,0,sizeof(decision_t));
}
while(nbits--) {
__m256i sym0v,sym1v,sym2v;
void *tmp;
sym0v = _mm256_set1_epi8(syms[0]);
sym1v = _mm256_set1_epi8(syms[1]);
sym2v = _mm256_set1_epi8(syms[2]);
syms += 3;
__m256i decision0,decision1,survivor0,survivor1,metric,m_metric,m0,m1,m2,m3;
/* Form branch metrics */
m0 = _mm256_avg_epu8(_mm256_xor_si256(Branchtab37_sse2[0].v,sym0v),_mm256_xor_si256(Branchtab37_sse2[1].v,sym1v));
metric = _mm256_avg_epu8(_mm256_xor_si256(Branchtab37_sse2[2].v,sym2v),m0);
#ifdef DEBUG
print_128i("metric_initial", metric);
#endif
/* There's no packed bytes right shift in SSE2, so we use the word version and mask
*/
metric = _mm256_srli_epi16(metric,3);
metric = _mm256_and_si256(metric,_mm256_set1_epi8(31));
m_metric = _mm256_sub_epi8(_mm256_set1_epi8(31),metric);
#ifdef DEBUG
print_128i("metric ", metric);
print_128i("m_metric ", m_metric);
#endif
__m256i temp = _mm256_set_m128i( vp->old_metrics->v[1], vp->old_metrics->v[0]);
m0 = _mm256_add_epi8(temp,metric);
m2 = _mm256_add_epi8(temp,m_metric);
temp = _mm256_set_m128i( vp->old_metrics->v[3], vp->old_metrics->v[2]);
m3 = _mm256_add_epi8(temp,metric);
m1 = _mm256_add_epi8(temp,m_metric);
/* Compare and select, using modulo arithmetic */
decision0 = _mm256_cmpgt_epi8(_mm256_sub_epi8(m0,m1),_mm256_setzero_si256());
decision1 =_mm256_cmpgt_epi8(_mm256_sub_epi8(m2,m3),_mm256_setzero_si256());
survivor0 = _mm256_or_si256(_mm256_and_si256(decision0,m1),_mm256_andnot_si256(decision0,m0));
survivor1 = _mm256_or_si256(_mm256_and_si256(decision1,m3),_mm256_andnot_si256(decision1,m2));
unsigned int x = _mm256_movemask_epi8(_mm256_unpackhi_epi8(decision0,decision1));
unsigned int y = _mm256_movemask_epi8(_mm256_unpacklo_epi8(decision0,decision1));
d->s[0] = (short) y;
d->s[1] = (short) x;
d->s[2] = (short) (y >>16);
d->s[3] = (short)(x>> 16);
__m256i unpack;
unpack = _mm256_unpacklo_epi8(survivor0,survivor1);
vp->new_metrics->v[0] =_mm256_castsi256_si128(unpack);
vp->new_metrics->v[1] = _mm256_extractf128_si256(unpack,1);
unpack = _mm256_unpackhi_epi8(survivor0,survivor1);
vp->new_metrics->v[2] =_mm256_castsi256_si128(unpack);
vp->new_metrics->v[3] = _mm256_extractf128_si256(unpack,1);
__m128i temp1 = vp->new_metrics->v[1];
vp->new_metrics->v[1] = vp->new_metrics->v[2];
vp->new_metrics->v[2] = temp1;
// See if we need to normalize
if (vp->new_metrics->c[0] > 100) {
int i;
uint8_t adjust;
__m128i adjustv;
union { __m128i v; signed short w[8]; } t;
adjustv = vp->new_metrics->v[0];
for(i=1;i<4;i++) {
adjustv = _mm_min_epu8(adjustv,vp->new_metrics->v[i]);
}
adjustv = _mm_min_epu8(adjustv,_mm_srli_si128(adjustv,8));
adjustv = _mm_min_epu8(adjustv,_mm_srli_si128(adjustv,4));
adjustv = _mm_min_epu8(adjustv,_mm_srli_si128(adjustv,2));
t.v = adjustv;
adjust = t.w[0];
adjustv = _mm_set1_epi8(adjust);
/* We cannot use a saturated subtract, because we often have to adjust by more than SHRT_MAX
* This is okay since it can't overflow anyway
*/
for(i=0;i<4;i++)
vp->new_metrics->v[i] = _mm_sub_epi8(vp->new_metrics->v[i],adjustv);
}
firstGo = 0;
d++;
/* Swap pointers to old and new metrics */
tmp = vp->old_metrics;
vp->old_metrics = vp->new_metrics;
vp->new_metrics = tmp;
}
if (best_state) {
uint32_t i, bst=0;
uint8_t minmetric=UINT8_MAX;
for (i=0;i<64;i++) {
if (vp->old_metrics->c[i] <= minmetric) {
bst = i;
minmetric = vp->old_metrics->c[i];
}
}
*best_state = bst;
}
#ifdef DEBUG
printf("];\n===========================================\n");
#endif
vp->dp = d;
}
#endif