You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

295 lines
8.0 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSRAN_MEMBLOCK_CACHE_H
#define SRSRAN_MEMBLOCK_CACHE_H
#include "pool_utils.h"
#include <mutex>
namespace srsran {
namespace detail {
class intrusive_memblock_list
{
public:
struct node {
node* next;
explicit node(node* prev_) : next(prev_) {}
};
node* head = nullptr;
size_t count = 0;
constexpr static size_t min_memblock_size() { return sizeof(node); }
constexpr static size_t min_memblock_align() { return alignof(node); }
void push(void* block) noexcept
{
srsran_assert(is_aligned(block, min_memblock_align()), "The provided memory block is not aligned");
node* ptr = ::new (block) node(head);
head = ptr;
count++;
}
void* pop() noexcept
{
srsran_assert(not empty(), "pop() called on empty list");
node* last_head = head;
head = head->next;
last_head->~node();
count--;
return static_cast<void*>(last_head);
}
void* try_pop() noexcept { return empty() ? nullptr : pop(); }
bool empty() const noexcept { return head == nullptr; }
size_t size() const { return count; }
void clear() noexcept
{
head = nullptr;
count = 0;
}
};
} // namespace detail
/**
* List of memory blocks. It overwrites bytes of blocks passed via push(void*). Thus, it is not safe to use in any
* pool of initialized objects
*/
class free_memblock_list : public detail::intrusive_memblock_list
{
private:
using base_t = detail::intrusive_memblock_list;
using base_t::count;
using base_t::head;
};
/**
* List of memory blocks, each memory block containing a node. Memory Structure:
* memory block 1 memory block
* [ next | node ] [ next | node ]
* '--------------^ '-----------> nullptr
*/
class memblock_node_list : public detail::intrusive_memblock_list
{
using base_t = detail::intrusive_memblock_list;
using base_t::count;
using base_t::head;
using base_t::try_pop;
public:
const size_t memblock_alignment;
const size_t header_size;
const size_t payload_size;
const size_t memblock_size;
explicit memblock_node_list(size_t node_size_, size_t node_alignment_ = detail::max_alignment) :
memblock_alignment(std::max(free_memblock_list::min_memblock_align(), node_alignment_)),
header_size(align_next(base_t::min_memblock_size(), memblock_alignment)),
payload_size(align_next(node_size_, memblock_alignment)),
memblock_size(header_size + payload_size)
{
srsran_assert(node_size_ > 0 and is_valid_alignment(node_alignment_),
"Invalid arguments node size=%zd,alignment=%zd",
node_size_,
node_alignment_);
}
void* get_node_header(void* payload_addr)
{
srsran_assert(is_aligned(payload_addr, memblock_alignment), "Provided address is not valid");
return static_cast<void*>(static_cast<uint8_t*>(payload_addr) - header_size);
}
/// returns address of memblock payload (skips memblock header)
void* top() noexcept { return static_cast<void*>(reinterpret_cast<uint8_t*>(this->head) + header_size); }
void steal_top(intrusive_memblock_list& other) noexcept
{
srsran_assert(not other.empty(), "Trying to steal from empty memblock list");
node* other_head = other.head;
other.head = other.head->next;
other_head->next = head;
head = other_head;
other.count--;
count++;
}
};
/// Similar to node_memblock_list, but manages the allocation/deallocation of memory blocks
class memblock_stack
{
public:
explicit memblock_stack(size_t node_size_, size_t node_alignment_ = detail::max_alignment) :
node_list(node_size_, node_alignment_)
{}
memblock_stack(const memblock_stack&) = delete;
memblock_stack(memblock_stack&& other) noexcept = delete;
memblock_stack& operator=(const memblock_stack&) = delete;
memblock_stack& operator=(memblock_stack&&) = delete;
~memblock_stack() { clear(); }
void clear()
{
while (not empty()) {
deallocate_block();
}
}
size_t get_memblock_size() const { return node_list.memblock_size; }
size_t get_node_max_size() const { return node_list.payload_size; }
void* allocate_block()
{
node_list.push(new uint8_t[node_list.memblock_size]);
return current_node();
}
void deallocate_block() noexcept
{
uint8_t* block = static_cast<uint8_t*>(node_list.pop());
delete[] block;
}
bool empty() const noexcept { return node_list.empty(); }
size_t size() const noexcept { return node_list.size(); }
void* current_node() noexcept { return node_list.top(); }
void steal_top(memblock_stack& other) noexcept { return node_list.steal_top(other.node_list); }
private:
static size_t get_memblock_start_offset(size_t node_alignment)
{
return align_next(detail::intrusive_memblock_list::min_memblock_size(), node_alignment);
}
static size_t get_memblock_size(size_t node_size, size_t node_alignment)
{
return align_next(get_memblock_start_offset(node_alignment) + node_size, detail::max_alignment);
}
memblock_node_list node_list;
};
/// memblock stack that mutexes pushing/popping
class concurrent_free_memblock_list
{
public:
concurrent_free_memblock_list() = default;
concurrent_free_memblock_list(const concurrent_free_memblock_list&) = delete;
concurrent_free_memblock_list(concurrent_free_memblock_list&& other) noexcept
{
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
std::lock(lk1, lk2);
stack = other.stack;
}
concurrent_free_memblock_list& operator=(const concurrent_free_memblock_list&) = delete;
concurrent_free_memblock_list& operator=(concurrent_free_memblock_list&& other) noexcept
{
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
std::lock(lk1, lk2);
stack = other.stack;
return *this;
}
void push(void* block) noexcept
{
std::lock_guard<std::mutex> lock(mutex);
stack.push(block);
}
void steal_blocks(free_memblock_list& other, size_t max_n) noexcept
{
std::lock_guard<std::mutex> lock(mutex);
for (size_t i = 0; i < max_n and not other.empty(); ++i) {
stack.push(other.try_pop());
}
}
void* try_pop() noexcept
{
std::lock_guard<std::mutex> lock(mutex);
void* block = stack.try_pop();
return block;
}
template <size_t N>
size_t try_pop(std::array<void*, N>& result) noexcept
{
std::lock_guard<std::mutex> lock(mutex);
size_t i = 0;
for (; i < N; ++i) {
result[i] = stack.try_pop();
if (result[i] == nullptr) {
break;
}
}
return i;
}
bool empty() const noexcept { return stack.empty(); }
size_t size() const noexcept
{
std::lock_guard<std::mutex> lock(mutex);
return stack.size();
}
void clear()
{
std::lock_guard<std::mutex> lock(mutex);
stack.clear();
}
private:
free_memblock_list stack;
mutable std::mutex mutex;
};
/**
* Manages the allocation, caching and deallocation of memory blocks.
* On alloc, a memory block is stolen from cache. If cache is empty, malloc/new is called.
* Only the last allocated memory block can be deallocated.
*/
class cached_memblock_stack
{
public:
explicit cached_memblock_stack(size_t block_size_) : used(block_size_), cache(block_size_) {}
void* allocate_block()
{
if (cache.empty()) {
used.allocate_block();
} else {
used.steal_top(cache);
}
return used.current_node();
}
void* current_node() noexcept { return used.current_node(); }
void deallocate_block() noexcept { cache.steal_top(used); }
size_t cache_size() const noexcept { return cache.size(); }
private:
memblock_stack used;
memblock_stack cache;
};
} // namespace srsran
#endif // SRSRAN_MEMBLOCK_CACHE_H