You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

690 lines
22 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/upper/rlc_um_nr.h"
#include <sstream>
#define RX_MOD_NR_BASE(x) (((x)-RX_Next_Highest - cfg.um_nr.UM_Window_Size) % cfg.um_nr.mod)
namespace srslte {
rlc_um_nr::rlc_um_nr(srslte::log_ref log_,
uint32_t lcid_,
srsue::pdcp_interface_rlc* pdcp_,
srsue::rrc_interface_rlc* rrc_,
srslte::timer_handler* timers_) :
rlc_um_base(log_, lcid_, pdcp_, rrc_, timers_)
{}
rlc_um_nr::~rlc_um_nr()
{
stop();
}
bool rlc_um_nr::configure(const rlc_config_t& cnfg_)
{
// determine bearer name and configure Rx/Tx objects
rb_name = get_rb_name(rrc, lcid, cnfg_.um.is_mrb);
// store config
cfg = cnfg_;
rx.reset(new rlc_um_nr_rx(this));
if (not rx->configure(cfg, rb_name)) {
return false;
}
tx.reset(new rlc_um_nr_tx(this));
if (not tx->configure(cfg, rb_name)) {
return false;
}
log->info("%s configured in %s: sn_field_length=%u bits\n",
rb_name.c_str(),
srslte::to_string(cnfg_.rlc_mode).c_str(),
srslte::to_number(cfg.um_nr.sn_field_length));
rx_enabled = true;
tx_enabled = true;
return true;
}
/****************************************************************************
* Tx Subclass implementation
***************************************************************************/
rlc_um_nr::rlc_um_nr_tx::rlc_um_nr_tx(rlc_um_base* parent_) : rlc_um_base_tx(parent_) {}
uint32_t rlc_um_nr::rlc_um_nr_tx::get_buffer_state()
{
std::lock_guard<std::mutex> lock(mutex);
// Bytes needed for tx SDUs
uint32_t n_sdus = tx_sdu_queue.size();
uint32_t n_bytes = tx_sdu_queue.size_bytes();
if (tx_sdu) {
n_sdus++;
n_bytes += tx_sdu->N_bytes;
}
// Room needed for header extensions? (integer rounding)
if (n_sdus > 1) {
n_bytes += ((n_sdus - 1) * 1.5) + 0.5;
}
// Room needed for fixed header?
if (n_bytes > 0)
n_bytes += (cfg.um.is_mrb) ? 2 : 3;
return n_bytes;
}
bool rlc_um_nr::rlc_um_nr_tx::configure(const rlc_config_t& cnfg_, std::string rb_name_)
{
cfg = cnfg_;
if (cfg.um_nr.mod == 0) {
log->error("Error configuring %s RLC UM: tx_mod==0\n", rb_name.c_str());
return false;
}
tx_sdu_queue.resize(cnfg_.tx_queue_length);
rb_name = rb_name_;
return true;
}
int rlc_um_nr::rlc_um_nr_tx::build_data_pdu(unique_byte_buffer_t pdu, uint8_t* payload, uint32_t nof_bytes)
{
std::lock_guard<std::mutex> lock(mutex);
rlc_um_nr_pdu_header_t header = {};
header.si = rlc_nr_si_field_t::full_sdu;
header.sn = TX_Next;
header.sn_size = cfg.um_nr.sn_field_length;
uint32_t to_move = 0;
uint8_t* pdu_ptr = pdu->msg;
int head_len = rlc_um_nr_packed_length(header);
int pdu_space = SRSLTE_MIN(nof_bytes, pdu->get_tailroom());
if (pdu_space <= head_len + 1) {
log->warning("%s Cannot build a PDU - %d bytes available, %d bytes required for header\n",
rb_name.c_str(),
nof_bytes,
head_len);
return 0;
}
// Check for SDU segment
if (tx_sdu) {
uint32_t space = pdu_space - head_len;
to_move = space >= tx_sdu->N_bytes ? tx_sdu->N_bytes : space;
log->debug(
"%s adding remainder of SDU segment - %d bytes of %d remaining\n", rb_name.c_str(), to_move, tx_sdu->N_bytes);
memcpy(pdu_ptr, tx_sdu->msg, to_move);
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if (tx_sdu->N_bytes == 0) {
log->debug(
"%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rb_name.c_str(), tx_sdu->get_latency_us());
tx_sdu.reset();
header.si = rlc_nr_si_field_t::last_segment;
} else {
header.si = rlc_nr_si_field_t::neither_first_nor_last_segment;
}
pdu_space -= SRSLTE_MIN(to_move, pdu->get_tailroom());
header.so = next_so;
} else {
// Pull SDU from queue
log->debug("pdu_space=%d, head_len=%d\n", pdu_space, head_len);
head_len = rlc_um_nr_packed_length(header);
tx_sdu = tx_sdu_queue.read();
uint32_t space = pdu_space - head_len;
to_move = space >= tx_sdu->N_bytes ? tx_sdu->N_bytes : space;
log->debug("%s adding new SDU - %d bytes of %d remaining\n", rb_name.c_str(), to_move, tx_sdu->N_bytes);
memcpy(pdu_ptr, tx_sdu->msg, to_move);
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if (tx_sdu->N_bytes == 0) {
log->debug(
"%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rb_name.c_str(), tx_sdu->get_latency_us());
tx_sdu.reset();
header.si = rlc_nr_si_field_t::full_sdu;
} else {
header.si = rlc_nr_si_field_t::first_segment;
}
pdu_space -= to_move;
}
// advance SO offset
next_so += to_move;
// Update SN if needed
if (header.si == rlc_nr_si_field_t::last_segment) {
TX_Next = (TX_Next + 1) % cfg.um_nr.mod;
next_so = 0;
}
// Add header and TX
rlc_um_nr_write_data_pdu_header(header, pdu.get());
memcpy(payload, pdu->msg, pdu->N_bytes);
uint32_t ret = pdu->N_bytes;
log->info_hex(payload, ret, "%s Tx PDU SN=%d (%d B)\n", rb_name.c_str(), header.sn, pdu->N_bytes);
debug_state();
return ret;
}
void rlc_um_nr::rlc_um_nr_tx::debug_state()
{
log->debug("%s TX_Next=%d, next_so=%d\n", rb_name.c_str(), TX_Next, next_so);
}
void rlc_um_nr::rlc_um_nr_tx::reset()
{
TX_Next = 0;
next_so = 0;
}
/****************************************************************************
* Rx Subclass implementation
***************************************************************************/
rlc_um_nr::rlc_um_nr_rx::rlc_um_nr_rx(rlc_um_base* parent_) :
rlc_um_base_rx(parent_),
reassembly_timer(timers->get_unique_timer())
{}
bool rlc_um_nr::rlc_um_nr_rx::configure(const rlc_config_t& cnfg_, std::string rb_name_)
{
if (cfg.um_nr.mod == 0) {
log->error("Error configuring %s RLC UM: rx_mod==0\n", rb_name.c_str());
return false;
}
// check timer
if (not reassembly_timer.is_valid()) {
log->error("Configuring RLC UM NR RX: timers not configured\n");
return false;
}
// configure timer
if (cfg.um_nr.t_reassembly_ms > 0) {
reassembly_timer.set(static_cast<uint32_t>(cfg.um_nr.t_reassembly_ms),
[this](uint32_t tid) { timer_expired(tid); });
}
return true;
}
void rlc_um_nr::rlc_um_nr_rx::stop()
{
std::lock_guard<std::mutex> lock(mutex);
reset();
reassembly_timer.stop();
}
void rlc_um_nr::rlc_um_nr_rx::reset()
{
RX_Next_Reassembly = 0;
RX_Timer_Trigger = 0;
RX_Next_Highest = 0;
rx_sdu.reset();
// Drop all messages in RX window
rx_window.clear();
// stop timer
if (reassembly_timer.is_valid()) {
reassembly_timer.stop();
}
}
// TS 38.322 Sec. 5.1.2
void rlc_um_nr::rlc_um_nr_rx::reestablish()
{
// drop all SDUs, SDU segments, PDUs and reset timers
reset();
}
// TS 38.322 v15.003 Section 5.2.2.2.4
void rlc_um_nr::rlc_um_nr_rx::timer_expired(uint32_t timeout_id)
{
std::lock_guard<std::mutex> lock(mutex);
if (reassembly_timer.id() == timeout_id) {
log->info("%s reassembly timeout expiry - updating RX_Next_Reassembly and reassembling\n", rb_name.c_str());
log->warning("Lost PDU SN: %d\n", RX_Next_Reassembly);
metrics.num_lost_pdus++;
if (rx_sdu != nullptr) {
rx_sdu->clear();
}
// update RX_Next_Reassembly to the next SN that has not been reassembled yet
RX_Next_Reassembly = RX_Timer_Trigger;
while (RX_MOD_NR_BASE(RX_Next_Reassembly) < RX_MOD_NR_BASE(RX_Next_Highest)) {
RX_Next_Reassembly = (RX_Next_Reassembly + 1) % cfg.um_nr.mod;
debug_state();
}
// discard all segments with SN < updated RX_Next_Reassembly
for (auto it = rx_window.begin(); it != rx_window.end();) {
if (it->first < RX_Next_Reassembly) {
it = rx_window.erase(it);
} else {
++it;
}
}
// check start of t_reassembly
if (RX_MOD_NR_BASE(RX_Next_Highest) > RX_MOD_NR_BASE(RX_Next_Reassembly + 1) ||
(RX_MOD_NR_BASE(RX_Next_Highest) == RX_MOD_NR_BASE(RX_Next_Reassembly + 1) &&
has_missing_byte_segment(RX_Next_Reassembly))) {
reassembly_timer.run();
RX_Timer_Trigger = RX_Next_Highest;
}
debug_state();
}
}
// Sec 5.2.2.2.1
bool rlc_um_nr::rlc_um_nr_rx::sn_in_reassembly_window(const uint32_t sn)
{
return (RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size) <= RX_MOD_NR_BASE(sn) &&
RX_MOD_NR_BASE(sn) < RX_MOD_NR_BASE(RX_Next_Highest));
}
// Sec 5.2.2.2.2
bool rlc_um_nr::rlc_um_nr_rx::sn_invalid_for_rx_buffer(const uint32_t sn)
{
return (RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size) <= RX_MOD_NR_BASE(sn) &&
RX_MOD_NR_BASE(sn) < RX_MOD_NR_BASE(RX_Next_Reassembly));
}
unique_byte_buffer_t rlc_um_nr::rlc_um_nr_rx::rlc_um_nr_strip_pdu_header(const rlc_um_nr_pdu_header_t& header,
const uint8_t* payload,
const uint32_t nof_bytes)
{
unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
if (!sdu) {
log->error("Discarting packet: no space in buffer pool\n");
return nullptr;
}
memcpy(sdu->msg, payload, nof_bytes);
sdu->N_bytes = nof_bytes;
// strip RLC header
int header_len = rlc_um_nr_packed_length(header);
sdu->msg += header_len;
sdu->N_bytes -= header_len;
return sdu;
}
bool rlc_um_nr::rlc_um_nr_rx::has_missing_byte_segment(const uint32_t sn)
{
// is at least one missing byte segment of the RLC SDU associated with SN = RX_Next_Reassembly before the last byte of
// all received segments of this RLC SDU
return true;
}
// Sect 5.2.2.2.3
void rlc_um_nr::rlc_um_nr_rx::handle_rx_buffer_update(const uint32_t sn)
{
if (rx_window.find(sn) != rx_window.end()) {
// iterate over received segments and try to assemble full SDU
auto& pdu = rx_window.at(sn);
for (auto it = pdu.segments.begin(); it != pdu.segments.end();) {
log->debug("Have %s segment with SO=%d for SN=%d\n",
to_string_short(it->second.header.si).c_str(),
it->second.header.so,
it->second.header.sn);
if (it->second.header.so == pdu.next_expected_so) {
if (pdu.next_expected_so == 0) {
if (pdu.sdu == nullptr) {
// reuse buffer of first segment for final SDU
pdu.sdu = std::move(it->second.buf);
pdu.next_expected_so = pdu.sdu->N_bytes;
log->debug("Reusing first segment of SN=%d for final SDU\n", it->second.header.sn);
it = pdu.segments.erase(it);
} else {
log->debug("SDU buffer already allocated. Possible retransmission of first segment.\n");
if (it->second.header.so != pdu.next_expected_so) {
log->error("Invalid PDU. SO doesn't match. Discarting all segments of SN=%d.\n", sn);
rx_window.erase(sn);
return;
}
}
} else {
if (it->second.buf->N_bytes > pdu.sdu->get_tailroom()) {
log->error("Cannot fit RLC PDU in SDU buffer (tailroom=%d, len=%d), dropping both. Erasing SN=%d.\n",
rx_sdu->get_tailroom(),
it->second.buf->N_bytes,
it->second.header.sn);
rx_window.erase(sn);
metrics.num_lost_pdus++;
return;
}
// add this segment to the end of the SDU buffer
memcpy(pdu.sdu->msg + pdu.sdu->N_bytes, it->second.buf->msg, it->second.buf->N_bytes);
pdu.sdu->N_bytes += it->second.buf->N_bytes;
pdu.next_expected_so += it->second.buf->N_bytes;
log->debug("Appended SO=%d of SN=%d\n", it->second.header.so, it->second.header.sn);
it = pdu.segments.erase(it);
if (pdu.next_expected_so == pdu.total_sdu_length) {
// deliver full SDU to upper layers
log->info("Delivering %s SDU SN=%d (%d B)", rb_name.c_str(), sn, pdu.sdu->N_bytes);
pdcp->write_pdu(lcid, std::move(pdu.sdu));
// find next SN in rx buffer
if (sn == RX_Next_Reassembly) {
RX_Next_Reassembly = ((RX_Next_Reassembly + 1) % cfg.um_nr.mod);
while (RX_MOD_NR_BASE(RX_Next_Reassembly) < RX_MOD_NR_BASE(RX_Next_Highest)) {
RX_Next_Reassembly = (RX_Next_Reassembly + 1) % cfg.um_nr.mod;
}
log->debug("Updating RX_Next_Reassembly=%d\n", RX_Next_Reassembly);
}
// delete PDU from rx_window
rx_window.erase(sn);
return;
}
}
} else {
// handle next segment
++it;
}
}
// check for SN outside of rx window
if (not sn_in_reassembly_window(sn)) {
// update RX_Next_highest
RX_Next_Highest = sn + 1;
log->debug("Updating RX_Next_Highest=%d\n", RX_Next_Highest);
// drop all SNs outside of new rx window
for (auto it = rx_window.begin(); it != rx_window.end();) {
if (not sn_in_reassembly_window(it->first)) {
log->info("%s SN: %d outside rx window [%d:%d] - discarding\n",
rb_name.c_str(),
it->first,
RX_Next_Highest - cfg.um_nr.UM_Window_Size,
RX_Next_Highest);
it = rx_window.erase(it);
metrics.num_lost_pdus++;
} else {
++it;
}
}
if (not sn_in_reassembly_window(RX_Next_Reassembly)) {
// update RX_Next_Reassembly to first SN that has not been reassembled and delivered
for (const auto& rx_pdu : rx_window) {
if (rx_pdu.first >= RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size)) {
RX_Next_Reassembly = rx_pdu.first;
log->debug("Updating RX_Next_Reassembly=%d\n", RX_Next_Reassembly);
break;
}
}
}
if (reassembly_timer.is_running()) {
if (RX_Timer_Trigger <= RX_Next_Reassembly ||
(not sn_in_reassembly_window(RX_Timer_Trigger) and RX_Timer_Trigger != RX_Next_Highest) ||
((RX_Next_Highest == RX_Next_Reassembly + 1) && not has_missing_byte_segment(sn))) {
reassembly_timer.stop();
}
}
if (not reassembly_timer.is_running() && has_missing_byte_segment(sn)) {
if (RX_Next_Highest > RX_Next_Reassembly + 1) {
reassembly_timer.run();
RX_Timer_Trigger = RX_Next_Highest;
}
}
}
} else {
log->error("SN=%d does not exist in Rx buffer\n", sn);
}
}
inline void rlc_um_nr::rlc_um_nr_rx::update_total_sdu_length(rlc_umd_pdu_segments_nr_t& pdu_segments,
const rlc_umd_pdu_nr_t& rx_pdu)
{
if (rx_pdu.header.si == rlc_nr_si_field_t::last_segment) {
pdu_segments.total_sdu_length = rx_pdu.header.so + rx_pdu.buf->N_bytes;
log->info("%s updating total SDU length for SN=%d to %d B\n",
rb_name.c_str(),
rx_pdu.header.sn,
pdu_segments.total_sdu_length);
}
};
// Section 5.2.2.2.2
void rlc_um_nr::rlc_um_nr_rx::handle_data_pdu(uint8_t* payload, uint32_t nof_bytes)
{
std::lock_guard<std::mutex> lock(mutex);
rlc_um_nr_pdu_header_t header = {};
rlc_um_nr_read_data_pdu_header(payload, nof_bytes, cfg.um_nr.sn_field_length, &header);
log->debug_hex(payload, nof_bytes, "RX %s Rx data PDU (%d B)", rb_name.c_str(), nof_bytes);
// check if PDU contains a SN
if (header.si == rlc_nr_si_field_t::full_sdu) {
// copy full PDU into buffer
unique_byte_buffer_t sdu = rlc_um_nr_strip_pdu_header(header, payload, nof_bytes);
// deliver to PDCP
log->info("Delivering %s SDU (%d B)", rb_name.c_str(), sdu->N_bytes);
pdcp->write_pdu(lcid, std::move(sdu));
} else if (sn_invalid_for_rx_buffer(header.sn)) {
log->info("%s Discarding SN=%d\n", rb_name.c_str(), header.sn);
// Nothing else to do here ..
} else {
// place PDU in receive buffer
rlc_umd_pdu_nr_t rx_pdu = {};
rx_pdu.header = header;
rx_pdu.buf = rlc_um_nr_strip_pdu_header(header, payload, nof_bytes);
// check if this SN is already present in rx buffer
if (rx_window.find(header.sn) == rx_window.end()) {
// first received segment of this SN, add to rx buffer
log->info("%s placing %s segment of SN=%d in Rx buffer\n",
rb_name.c_str(),
to_string_short(header.si).c_str(),
header.sn);
rlc_umd_pdu_segments_nr_t pdu_segments = {};
update_total_sdu_length(pdu_segments, rx_pdu);
pdu_segments.segments.emplace(header.so, std::move(rx_pdu));
rx_window[header.sn] = std::move(pdu_segments);
} else {
// other segment for this SN already present, update received data
log->info("%s updating SN=%d at SO=%d with %d B\n",
rb_name.c_str(),
rx_pdu.header.sn,
rx_pdu.header.so,
rx_pdu.buf->N_bytes);
auto& pdu_segments = rx_window.at(header.sn);
// calculate total SDU length
update_total_sdu_length(pdu_segments, rx_pdu);
// append to list of segments
pdu_segments.segments.emplace(header.so, std::move(rx_pdu));
}
// handle received segments
handle_rx_buffer_update(header.sn);
}
debug_state();
}
void rlc_um_nr::rlc_um_nr_rx::debug_state()
{
log->debug("%s RX_Next_Reassembly=%d, RX_Timer_Trigger=%d, RX_Next_Highest=%d, t_Reassembly=%s\n",
rb_name.c_str(),
RX_Next_Reassembly,
RX_Timer_Trigger,
RX_Next_Highest,
reassembly_timer.is_running() ? "running" : "stopped");
}
/****************************************************************************
* Header pack/unpack helper functions
* Ref: 3GPP TS 38.322 v15.3.0 Section 6.2.2.3
***************************************************************************/
uint32_t rlc_um_nr_read_data_pdu_header(const byte_buffer_t* pdu,
const rlc_um_nr_sn_size_t sn_size,
rlc_um_nr_pdu_header_t* header)
{
return rlc_um_nr_read_data_pdu_header(pdu->msg, pdu->N_bytes, sn_size, header);
}
uint32_t rlc_um_nr_read_data_pdu_header(const uint8_t* payload,
const uint32_t nof_bytes,
const rlc_um_nr_sn_size_t sn_size,
rlc_um_nr_pdu_header_t* header)
{
uint8_t* ptr = const_cast<uint8_t*>(payload);
header->sn_size = sn_size;
// Fixed part
if (sn_size == rlc_um_nr_sn_size_t::size6bits) {
header->si = (rlc_nr_si_field_t)((*ptr >> 6) & 0x03); // 2 bits SI
header->sn = *ptr & 0x3F; // 6 bits SN
// sanity check
if (header->si == rlc_nr_si_field_t::full_sdu and header->sn != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
ptr++;
} else if (sn_size == rlc_um_nr_sn_size_t::size12bits) {
header->si = (rlc_nr_si_field_t)((*ptr >> 6) & 0x03); // 2 bits SI
header->sn = (*ptr & 0x0F) << 4; // 4 bits SN
// sanity check
if (header->si == rlc_nr_si_field_t::first_segment) {
// make sure two reserved bits are not set
if (((*ptr >> 4) & 0x03) != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
}
// continue unpacking remaining SN
ptr++;
header->sn |= (*ptr & 0xFF); // 8 bits SN
ptr++;
} else {
fprintf(stderr, "Unsupported SN length\n");
return 0;
}
// Read optional part
if (header->si == rlc_nr_si_field_t::last_segment ||
header->si == rlc_nr_si_field_t::neither_first_nor_last_segment) {
// read SO
header->so = (*ptr & 0xFF) << 8;
ptr++;
header->so |= (*ptr & 0xFF);
ptr++;
}
// return consumed bytes
return (ptr - payload);
}
uint32_t rlc_um_nr_packed_length(const rlc_um_nr_pdu_header_t& header)
{
uint32_t len = 0;
if (header.si == rlc_nr_si_field_t::full_sdu || header.si == rlc_nr_si_field_t::first_segment) {
len = 1;
if (header.sn_size == rlc_um_nr_sn_size_t::size12bits) {
len++;
}
} else {
if (header.sn_size == rlc_um_nr_sn_size_t::size6bits) {
len = 3;
} else {
len = 4;
}
}
return len;
}
uint32_t rlc_um_nr_write_data_pdu_header(const rlc_um_nr_pdu_header_t& header, byte_buffer_t* pdu)
{
// Make room for the header
uint32_t len = rlc_um_nr_packed_length(header);
pdu->msg -= len;
uint8_t* ptr = pdu->msg;
// write SI field
*ptr = (header.si & 0x03) << 6; // 2 bits SI
if (header.si == rlc_nr_si_field_t::full_sdu) {
// that's all ..
ptr++;
} else {
if (header.sn_size == rlc_um_nr_sn_size_t::size6bits) {
// write SN
*ptr |= (header.sn & 0x3f); // 6 bit SN
ptr++;
} else {
// 12bit SN
*ptr |= (header.sn & 0xf); // 4 bit SN
ptr++;
*ptr = (header.sn & 0xFF); // remaining 8 bit SN
ptr++;
}
if (header.so) {
// write SO
*ptr = (header.so) >> 8; // first part of SO
ptr++;
*ptr = (header.so & 0xFF); // second part of SO
ptr++;
}
}
pdu->N_bytes += ptr - pdu->msg;
return len;
}
} // namespace srslte