You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1032 lines
28 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2017 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of srsLTE.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <string.h>
#include "srslte/srslte.h"
#include "srslte/common/pdu.h"
#include "mac/scheduler_ue.h"
#include "mac/scheduler.h"
#define Error(fmt, ...) log_h->error_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) log_h->warning_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__)
#define Info(fmt, ...) log_h->info_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) log_h->debug_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__)
/******************************************************
* UE class *
******************************************************/
namespace srsenb {
/*******************************************************
*
* Initialization and configuration functions
*
*******************************************************/
sched_ue::sched_ue()
{
reset();
}
void sched_ue::set_cfg(uint16_t rnti_, sched_interface::ue_cfg_t *cfg_, sched_interface::cell_cfg_t *cell_cfg,
srslte_regs_t *regs, srslte::log *log_h_)
{
reset();
rnti = rnti_;
log_h = log_h_;
memcpy(&cell, &cell_cfg->cell, sizeof(srslte_cell_t));
max_mcs_dl = 28;
max_mcs_ul = 28;
if (cfg_) {
memcpy(&cfg, cfg_, sizeof(sched_interface::ue_cfg_t));
}
Info("SCHED: Added user rnti=0x%x\n", rnti);
for (int i=0;i<sched_interface::MAX_LC;i++) {
set_bearer_cfg(i, &cfg.ue_bearers[i]);
}
// Config HARQ processes
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
dl_harq[i].config(i, cfg.maxharq_tx, log_h);
ul_harq[i].config(i, cfg.maxharq_tx, log_h);
}
// Generate allowed CCE locations
for (int cfi=0;cfi<3;cfi++) {
for (int sf_idx=0;sf_idx<10;sf_idx++) {
sched::generate_cce_location(regs, &dci_locations[cfi][sf_idx], cfi+1, sf_idx, rnti);
}
}
}
void sched_ue::reset()
{
bzero(&cfg, sizeof(sched_interface::ue_cfg_t));
sr = false;
next_tpc_pusch = 1;
next_tpc_pucch = 1;
buf_mac = 0;
buf_ul = 0;
phy_config_dedicated_enabled = false;
dl_cqi = 1;
ul_cqi = 1;
dl_cqi_tti = 0;
ul_cqi_tti = 0;
cqi_request_tti = 0;
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
for(uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb++) {
dl_harq[i].reset(tb);
ul_harq[i].reset(tb);
}
}
for (int i=0;i<sched_interface::MAX_LC; i++) {
rem_bearer(i);
}
}
void sched_ue::set_fixed_mcs(int mcs_ul, int mcs_dl) {
fixed_mcs_ul = mcs_ul;
fixed_mcs_dl = mcs_dl;
}
void sched_ue::set_max_mcs(int mcs_ul, int mcs_dl) {
if (mcs_ul < 0) {
max_mcs_ul = 28;
} else {
max_mcs_ul = mcs_ul;
}
if (mcs_dl < 0) {
max_mcs_dl = 28;
} else {
max_mcs_dl = mcs_dl;
}
}
/*******************************************************
*
* FAPI-like main scheduler interface.
*
*******************************************************/
void sched_ue::set_bearer_cfg(uint32_t lc_id, sched_interface::ue_bearer_cfg_t* cfg)
{
if (lc_id < sched_interface::MAX_LC) {
memcpy(&lch[lc_id].cfg, cfg, sizeof(sched_interface::ue_bearer_cfg_t));
lch[lc_id].buf_tx = 0;
lch[lc_id].buf_retx = 0;
if (lch[lc_id].cfg.direction != sched_interface::ue_bearer_cfg_t::IDLE) {
Info("SCHED: Set bearer config lc_id=%d, direction=%d\n", lc_id, (int) lch[lc_id].cfg.direction);
}
}
}
void sched_ue::rem_bearer(uint32_t lc_id)
{
if (lc_id < sched_interface::MAX_LC) {
bzero(&lch[lc_id], sizeof(ue_bearer_t));
}
}
void sched_ue::phy_config_enabled(uint32_t tti, bool enabled)
{
dl_cqi_tti = tti;
phy_config_dedicated_enabled = enabled;
}
void sched_ue::ul_buffer_state(uint8_t lc_id, uint32_t bsr, bool set_value)
{
if (lc_id < sched_interface::MAX_LC) {
if (set_value) {
lch[lc_id].bsr = bsr;
} else {
lch[lc_id].bsr += bsr;
}
}
Debug("SCHED: bsr=%d, lcid=%d, bsr={%d,%d,%d,%d}\n", bsr, lc_id,
lch[0].bsr, lch[1].bsr, lch[2].bsr, lch[3].bsr);
}
void sched_ue::ul_phr(int phr)
{
power_headroom= phr;
}
void sched_ue::dl_buffer_state(uint8_t lc_id, uint32_t tx_queue, uint32_t retx_queue)
{
if (lc_id < sched_interface::MAX_LC) {
lch[lc_id].buf_retx = retx_queue;
lch[lc_id].buf_tx = tx_queue;
Debug("SCHED: DL lcid=%d buffer_state=%d,%d\n", lc_id, tx_queue, retx_queue);
}
}
void sched_ue::mac_buffer_state(uint32_t ce_code)
{
buf_mac++;
}
void sched_ue::set_sr()
{
sr = true;
}
void sched_ue::unset_sr()
{
sr = false;
}
bool sched_ue::pucch_sr_collision(uint32_t current_tti, uint32_t n_cce)
{
if (!phy_config_dedicated_enabled) {
return false;
}
srslte_pucch_sched_t pucch_sched;
pucch_sched.n_pucch_sr = cfg.sr_N_pucch;
pucch_sched.n_pucch_2 = cfg.n_pucch_cqi;
pucch_sched.N_pucch_1 = cfg.pucch_cfg.n1_pucch_an;
bool has_sr = cfg.sr_enabled && srslte_ue_ul_sr_send_tti(cfg.sr_I, current_tti);
if (!has_sr) {
return false;
}
uint32_t n_pucch_sr = srslte_pucch_get_npucch(n_cce, SRSLTE_PUCCH_FORMAT_1A, true, &pucch_sched);
uint32_t n_pucch_nosr = srslte_pucch_get_npucch(n_cce, SRSLTE_PUCCH_FORMAT_1A, false, &pucch_sched);
if (srslte_pucch_n_prb(&cfg.pucch_cfg, SRSLTE_PUCCH_FORMAT_1A, n_pucch_sr, cell.nof_prb, cell.cp, 0) ==
srslte_pucch_n_prb(&cfg.pucch_cfg, SRSLTE_PUCCH_FORMAT_1A, n_pucch_nosr, cell.nof_prb, cell.cp, 0))
{
return true;
} else {
return false;
}
}
bool sched_ue::get_pucch_sched(uint32_t current_tti, uint32_t prb_idx[2])
{
if (!phy_config_dedicated_enabled) {
return false;
}
srslte_pucch_sched_t pucch_sched;
pucch_sched.sps_enabled = false;
pucch_sched.n_pucch_sr = cfg.sr_N_pucch;
pucch_sched.n_pucch_2 = cfg.n_pucch_cqi;
pucch_sched.N_pucch_1 = cfg.pucch_cfg.n1_pucch_an;
bool has_sr = cfg.sr_enabled && srslte_ue_ul_sr_send_tti(cfg.sr_I, current_tti);
// First check if it has pending ACKs
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
if (TTI_TX(dl_harq[i].get_tti()) == current_tti) {
uint32_t n_pucch = srslte_pucch_get_npucch(dl_harq[i].get_n_cce(), SRSLTE_PUCCH_FORMAT_1A, has_sr, &pucch_sched);
if (prb_idx) {
for (int j=0;j<2;j++) {
prb_idx[j] = srslte_pucch_n_prb(&cfg.pucch_cfg, SRSLTE_PUCCH_FORMAT_1A, n_pucch, cell.nof_prb, cell.cp, j);
}
Debug("SCHED: Reserved Format1A PUCCH for rnti=0x%x, n_prb=%d,%d, n_pucch=%d, ncce=%d, has_sr=%d, n_pucch_1=%d\n",
rnti, prb_idx[0], prb_idx[1], n_pucch, dl_harq[i].get_n_cce(), has_sr, pucch_sched.N_pucch_1);
}
return true;
}
}
// If there is no Format1A/B, then check if it's expecting Format1
if (has_sr) {
if (prb_idx) {
for (int i=0;i<2;i++) {
prb_idx[i] = srslte_pucch_n_prb(&cfg.pucch_cfg, SRSLTE_PUCCH_FORMAT_1, cfg.sr_N_pucch, cell.nof_prb, cell.cp, i);
}
}
Debug("SCHED: Reserved Format1 PUCCH for rnti=0x%x, n_prb=%d,%d, n_pucch=%d\n", rnti, prb_idx[0], prb_idx[1], cfg.sr_N_pucch);
return true;
}
// Finally check Format2 (periodic CQI)
if (cfg.cqi_enabled && srslte_cqi_send(cfg.cqi_idx, current_tti)) {
if (prb_idx) {
for (int i=0;i<2;i++) {
prb_idx[i] = srslte_pucch_n_prb(&cfg.pucch_cfg, SRSLTE_PUCCH_FORMAT_2, cfg.cqi_pucch, cell.nof_prb, cell.cp, i);
}
Debug("SCHED: Reserved Format2 PUCCH for rnti=0x%x, n_prb=%d,%d, n_pucch=%d, pmi_idx=%d\n",
rnti, prb_idx[0], prb_idx[1], cfg.cqi_pucch, cfg.cqi_idx);
}
return true;
}
return false;
}
int sched_ue::set_ack_info(uint32_t tti, uint32_t tb_idx, bool ack)
{
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
if (TTI_TX(dl_harq[i].get_tti()) == tti) {
Debug("SCHED: Set ACK=%d for rnti=0x%x, pid=%d.%d, tti=%d\n", ack, rnti, i, tb_idx, tti);
dl_harq[i].set_ack(tb_idx, ack);
return dl_harq[i].get_tbs(tb_idx);
}
}
Warning("SCHED: Received ACK info for unknown TTI=%d\n", tti);
return -1;
}
void sched_ue::ul_recv_len(uint32_t lcid, uint32_t len)
{
// Remove PDCP header??
if (len > 4) {
len -= 4;
}
if (lcid < sched_interface::MAX_LC) {
if (bearer_is_ul(&lch[lcid])) {
if (lch[lcid].bsr > (int) len) {
lch[lcid].bsr -= len;
} else {
lch[lcid].bsr = 0;
}
}
}
Debug("SCHED: recv_len=%d, lcid=%d, bsr={%d,%d,%d,%d}\n", len, lcid,
lch[0].bsr, lch[1].bsr, lch[2].bsr, lch[3].bsr);
}
void sched_ue::set_ul_crc(uint32_t tti, bool crc_res)
{
get_ul_harq(tti)->set_ack(0, crc_res);
}
void sched_ue::set_dl_ri(uint32_t tti, uint32_t ri)
{
dl_ri = ri;
dl_ri_tti = tti;
}
void sched_ue::set_dl_pmi(uint32_t tti, uint32_t pmi)
{
dl_pmi = pmi;
dl_pmi_tti = tti;
}
void sched_ue::set_dl_cqi(uint32_t tti, uint32_t cqi)
{
dl_cqi = cqi;
dl_cqi_tti = tti;
}
void sched_ue::set_dl_ant_info(LIBLTE_RRC_ANTENNA_INFO_DEDICATED_STRUCT *d)
{
memcpy(&dl_ant_info, d, sizeof(LIBLTE_RRC_ANTENNA_INFO_DEDICATED_STRUCT));
}
void sched_ue::set_ul_cqi(uint32_t tti, uint32_t cqi, uint32_t ul_ch_code)
{
ul_cqi = cqi;
ul_cqi_tti = tti;
}
void sched_ue::tpc_inc() {
if (power_headroom > 0) {
next_tpc_pusch = 3;
next_tpc_pucch = 3;
}
log_h->info("SCHED: Set TCP=%d for rnti=0x%x\n", next_tpc_pucch, rnti);
}
void sched_ue::tpc_dec() {
next_tpc_pusch = 0;
next_tpc_pucch = 0;
log_h->info("SCHED: Set TCP=%d for rnti=0x%x\n", next_tpc_pucch, rnti);
}
/*******************************************************
*
* Functions used to generate DCI grants
*
*******************************************************/
// Generates a Format1 grant
int sched_ue::generate_format1(dl_harq_proc *h,
sched_interface::dl_sched_data_t *data,
uint32_t tti,
uint32_t cfi)
{
srslte_ra_dl_dci_t *dci = &data->dci;
bzero(dci, sizeof(srslte_ra_dl_dci_t));
uint32_t sf_idx = tti%10;
int mcs = 0;
int tbs = 0;
dci->alloc_type = SRSLTE_RA_ALLOC_TYPE0;
dci->type0_alloc.rbg_bitmask = h->get_rbgmask();
// If this is the first transmission for this UE, make room for MAC Contention Resolution ID
bool need_conres_ce = false;
if (is_first_dl_tx()) {
need_conres_ce = true;
}
if (h->is_empty(0)) {
uint32_t req_bytes = get_pending_dl_new_data(tti);
uint32_t nof_prb = format1_count_prb(h->get_rbgmask(), cell.nof_prb);
srslte_ra_dl_grant_t grant;
srslte_ra_dl_dci_to_grant_prb_allocation(dci, &grant, cell.nof_prb);
uint32_t nof_ctrl_symbols = cfi+(cell.nof_prb<10?1:0);
uint32_t nof_re = srslte_ra_dl_grant_nof_re(&grant, cell, sf_idx, nof_ctrl_symbols);
if (fixed_mcs_dl < 0) {
tbs = alloc_tbs_dl(nof_prb, nof_re, req_bytes, &mcs);
} else {
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(fixed_mcs_dl), nof_prb)/8;
mcs = fixed_mcs_dl;
}
h->new_tx(0, tti, mcs, tbs, data->dci_location.ncce);
// Allocate MAC ConRes CE
if (need_conres_ce) {
data->pdu[0][0].lcid = srslte::sch_subh::CON_RES_ID;
data->nof_pdu_elems[0]++;
Info("SCHED: Added MAC Contention Resolution CE for rnti=0x%x\n", rnti);
}
int rem_tbs = tbs;
int x = 0;
do {
x = alloc_pdu(rem_tbs, &data->pdu[0][data->nof_pdu_elems[0]]);
rem_tbs -= x;
if (x) {
data->nof_pdu_elems[0]++;
}
} while(rem_tbs > 0 && x > 0);
Debug("SCHED: Alloc format1 new mcs=%d, tbs=%d, nof_prb=%d, req_bytes=%d\n", mcs, tbs, nof_prb, req_bytes);
} else {
h->new_retx(0, tti, &mcs, &tbs);
Debug("SCHED: Alloc format1 previous mcs=%d, tbs=%d\n", mcs, tbs);
}
data->rnti = rnti;
if (tbs > 0) {
dci->harq_process = h->get_id();
dci->mcs_idx = (uint32_t) mcs;
dci->rv_idx = sched::get_rvidx(h->nof_retx(0));
dci->ndi = h->get_ndi(0);
dci->tpc_pucch = (uint8_t) next_tpc_pucch;
next_tpc_pucch = 1;
data->tbs[0] = (uint32_t) tbs;
data->tbs[1] = 0;
dci->tb_en[0] = true;
dci->tb_en[1] = false;
}
return tbs;
}
// Generates a Format2a grant
int sched_ue::generate_format2a(dl_harq_proc *h,
sched_interface::dl_sched_data_t *data,
uint32_t tti,
uint32_t cfi)
{
bool tb_en[SRSLTE_MAX_TB] = {false};
srslte_ra_dl_dci_t *dci = &data->dci;
bzero(dci, sizeof(srslte_ra_dl_dci_t));
uint32_t sf_idx = tti%10;
dci->alloc_type = SRSLTE_RA_ALLOC_TYPE0;
dci->type0_alloc.rbg_bitmask = h->get_rbgmask();
uint32_t nof_prb = format1_count_prb(h->get_rbgmask(), cell.nof_prb);
uint32_t nof_ctrl_symbols = cfi + (cell.nof_prb < 10 ? 1 : 0);
srslte_ra_dl_grant_t grant;
srslte_ra_dl_dci_to_grant_prb_allocation(dci, &grant, cell.nof_prb);
uint32_t nof_re = srslte_ra_dl_grant_nof_re(&grant, cell, sf_idx, nof_ctrl_symbols);
uint32_t req_bytes = get_pending_dl_new_data(tti);
if (dl_ri == 0) {
if (h->is_empty(1)) {
/* One layer, tb1 buffer is empty, send tb0 only */
tb_en[0] = true;
} else {
/* One layer, tb1 buffer is not empty, send tb1 only */
tb_en[1] = true;
}
} else {
/* Two layers, retransmit what TBs that have not been Acknowledged */
bool no_retx = true;
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb++) {
if (!h->is_empty(tb)) {
tb_en[tb] = true;
no_retx = false;
}
}
/* Two layers, no retransmissions... */
if (no_retx) {
tb_en[0] = true;
tb_en[1] = true;
}
}
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb++) {
int mcs = 0;
int tbs = 0;
if (tb_en[tb]) {
if (h->is_empty(tb)) {
if (fixed_mcs_dl < 0) {
tbs = alloc_tbs_dl(nof_prb, nof_re, req_bytes, &mcs);
} else {
tbs = srslte_ra_tbs_from_idx((uint32_t) srslte_ra_tbs_idx_from_mcs((uint32_t) fixed_mcs_dl), nof_prb) / 8;
mcs = fixed_mcs_dl;
}
h->new_tx(tb, tti, mcs, tbs, data->dci_location.ncce);
int rem_tbs = tbs;
int x = 0;
do {
x = alloc_pdu(rem_tbs, &data->pdu[tb][data->nof_pdu_elems[tb]]);
rem_tbs -= x;
if (x) {
data->nof_pdu_elems[tb]++;
}
} while (rem_tbs > 0 && x > 0);
Debug("SCHED: Alloc format2/2a new mcs=%d, tbs=%d, nof_prb=%d, req_bytes=%d\n", mcs, tbs, nof_prb, req_bytes);
} else {
h->new_retx(tb, tti, &mcs, &tbs);
Debug("SCHED: Alloc format2/2a previous mcs=%d, tbs=%d\n", mcs, tbs);
}
}
/* Fill DCI TB dedicated fields */
if (tbs > 0) {
if (tb == 0) {
dci->mcs_idx = (uint32_t) mcs;
dci->rv_idx = sched::get_rvidx(h->nof_retx(tb));
dci->ndi = h->get_ndi(tb);
} else {
dci->mcs_idx_1 = (uint32_t) mcs;
dci->rv_idx_1 = sched::get_rvidx(h->nof_retx(tb));
dci->ndi_1 = h->get_ndi(tb);
}
data->tbs[tb] = (uint32_t) tbs;
dci->tb_en[tb] = true;
} else {
data->tbs[tb] = 0;
dci->tb_en[tb] = false;
}
if ( req_bytes > (uint32_t) tbs) {
req_bytes -= tbs;
} else {
req_bytes = 0;
}
}
/* Fill common fields */
data->rnti = rnti;
dci->harq_process = h->get_id();
dci->tpc_pucch = (uint8_t) next_tpc_pucch;
next_tpc_pucch = 1;
return data->tbs[0] + data->tbs[1];
}
// Generates a Format2 grant
int sched_ue::generate_format2(dl_harq_proc *h,
sched_interface::dl_sched_data_t *data,
uint32_t tti,
uint32_t cfi)
{
/* Call Format 2a (common) */
int ret = generate_format2a(h, data, tti, cfi);
/* Compute precoding information */
if (SRSLTE_RA_DL_GRANT_NOF_TB(&data->dci) == 1) {
data->dci.pinfo = (uint8_t) (dl_pmi + 1) % (uint8_t) 5;
} else {
data->dci.pinfo = (uint8_t) (dl_pmi & 1);
}
return ret;
}
int sched_ue::generate_format0(ul_harq_proc *h,
sched_interface::ul_sched_data_t *data,
uint32_t tti,
bool cqi_request)
{
srslte_ra_ul_dci_t *dci = &data->dci;
bzero(dci, sizeof(srslte_ra_ul_dci_t));
int mcs = 0;
int tbs = 0;
ul_harq_proc::ul_alloc_t allocation = h->get_alloc();
bool is_newtx = true;
if (h->get_rar_mcs(&mcs)) {
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(mcs), allocation.L)/8;
h->new_tx(tti, mcs, tbs);
} else if (h->is_empty(0)) {
uint32_t req_bytes = get_pending_ul_new_data(tti);
uint32_t N_srs = 0;
uint32_t nof_re = (2*(SRSLTE_CP_NSYMB(cell.cp)-1) - N_srs)*allocation.L*SRSLTE_NRE;
if (fixed_mcs_ul < 0) {
tbs = alloc_tbs_ul(allocation.L, nof_re, req_bytes, &mcs);
} else {
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(fixed_mcs_ul), allocation.L)/8;
mcs = fixed_mcs_ul;
}
h->new_tx(tti, mcs, tbs);
} else {
is_newtx = false;
h->new_retx(0, tti, &mcs, NULL);
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(mcs), allocation.L)/8;
}
data->rnti = rnti;
data->tbs = tbs;
if (tbs > 0) {
dci->type2_alloc.L_crb = allocation.L;
dci->type2_alloc.RB_start = allocation.RB_start;
dci->rv_idx = sched::get_rvidx(h->nof_retx(0));
if (!is_newtx && h->is_adaptive_retx()) {
dci->mcs_idx = 28+dci->rv_idx;
} else {
dci->mcs_idx = mcs;
}
dci->ndi = h->get_ndi(0);
dci->cqi_request = cqi_request;
dci->freq_hop_fl = srslte_ra_ul_dci_t::SRSLTE_RA_PUSCH_HOP_DISABLED;
dci->tpc_pusch = next_tpc_pusch;
next_tpc_pusch = 1;
}
return tbs;
}
/*******************************************************
*
* Functions used by scheduler or scheduler metric objects
*
*******************************************************/
bool sched_ue::bearer_is_ul(ue_bearer_t *lch) {
return lch->cfg.direction == sched_interface::ue_bearer_cfg_t::UL || lch->cfg.direction == sched_interface::ue_bearer_cfg_t::BOTH;
}
bool sched_ue::bearer_is_dl(ue_bearer_t *lch) {
return lch->cfg.direction == sched_interface::ue_bearer_cfg_t::DL || lch->cfg.direction == sched_interface::ue_bearer_cfg_t::BOTH;
}
uint32_t sched_ue::get_max_retx() {
return cfg.maxharq_tx;
}
bool sched_ue::is_first_dl_tx()
{
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
if (dl_harq[i].nof_tx(0) > 0) {
return false;
}
}
return true;
}
bool sched_ue::needs_cqi(uint32_t tti, bool will_be_sent)
{
bool ret = false;
if (phy_config_dedicated_enabled &&
cfg.aperiodic_cqi_period &&
get_pending_dl_new_data(tti) > 0)
{
uint32_t interval = srslte_tti_interval(tti, dl_cqi_tti);
bool needscqi = interval >= cfg.aperiodic_cqi_period;
if (needscqi) {
uint32_t interval_sent = srslte_tti_interval(tti, cqi_request_tti);
if (interval_sent >= 16) {
if (will_be_sent) {
cqi_request_tti = tti;
}
Debug("SCHED: Needs_cqi, last_sent=%d, will_be_sent=%d\n", cqi_request_tti, will_be_sent);
ret = true;
}
}
}
return ret;
}
uint32_t sched_ue::get_pending_dl_new_data(uint32_t tti)
{
uint32_t pending_data = 0;
for (int i=0;i<sched_interface::MAX_LC;i++) {
if (bearer_is_dl(&lch[i])) {
pending_data += lch[i].buf_retx + lch[i].buf_tx;
}
}
return pending_data;
}
uint32_t sched_ue::get_pending_ul_new_data(uint32_t tti)
{
uint32_t pending_data = 0;
for (int i=0;i<sched_interface::MAX_LC;i++) {
if (bearer_is_ul(&lch[i])) {
pending_data += lch[i].bsr;
}
}
if (!pending_data && is_sr_triggered()) {
return 512;
}
if (!pending_data && needs_cqi(tti)) {
return 128;
}
uint32_t pending_ul_data = get_pending_ul_old_data();
if (pending_data > pending_ul_data) {
pending_data -= pending_ul_data;
} else {
pending_data = 0;
}
if (pending_data) {
Debug("SCHED: pending_data=%d, pending_ul_data=%d, bsr={%d,%d,%d,%d}\n", pending_data,pending_ul_data,
lch[0].bsr, lch[1].bsr, lch[2].bsr, lch[3].bsr);
}
return pending_data;
}
uint32_t sched_ue::get_pending_ul_old_data()
{
uint32_t pending_data = 0;
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
pending_data += ul_harq[i].get_pending_data();
}
return pending_data;
}
uint32_t sched_ue::get_required_prb_dl(uint32_t req_bytes, uint32_t nof_ctrl_symbols)
{
int mcs = 0;
uint32_t nbytes = 0;
uint32_t n = 0;
if (req_bytes == 0) {
return 0;
}
uint32_t nof_re = 0;
int tbs = 0;
for (n=1;n<=cell.nof_prb && nbytes < req_bytes;n++) {
nof_re = srslte_ra_dl_approx_nof_re(cell, n, nof_ctrl_symbols);
if (fixed_mcs_dl < 0) {
tbs = alloc_tbs_dl(n, nof_re, 0, &mcs);
} else {
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(fixed_mcs_dl), n)/8;
}
if (tbs > 0) {
nbytes = tbs;
} else if (tbs < 0) {
return 0;
}
}
return n;
}
uint32_t sched_ue::get_required_prb_ul(uint32_t req_bytes)
{
int mcs = 0;
int tbs = 0;
uint32_t nbytes = 0;
uint32_t N_srs = 0;
uint32_t n = 0;
if (req_bytes == 0) {
return 0;
}
for (n=1;n<cell.nof_prb && nbytes < req_bytes + 4;n++) {
uint32_t nof_re = (2*(SRSLTE_CP_NSYMB(cell.cp)-1) - N_srs)*n*SRSLTE_NRE;
int tbs = 0;
if (fixed_mcs_ul < 0) {
tbs = alloc_tbs_ul(n, nof_re, 0, &mcs);
} else {
tbs = srslte_ra_tbs_from_idx(srslte_ra_tbs_idx_from_mcs(fixed_mcs_ul), n)/8;
}
if (tbs > 0) {
nbytes = tbs;
}
}
while (!srslte_dft_precoding_valid_prb(n) && n<=cell.nof_prb) {
n++;
}
return n;
}
bool sched_ue::is_sr_triggered()
{
return sr;
}
/* Gets HARQ process with oldest pending retx */
dl_harq_proc* sched_ue::get_pending_dl_harq(uint32_t tti)
{
#if ASYNC_DL_SCHED
int oldest_idx=-1;
uint32_t oldest_tti = 0;
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
if (dl_harq[i].has_pending_retx(0, tti) || dl_harq[i].has_pending_retx(1, tti)) {
uint32_t x = srslte_tti_interval(tti, dl_harq[i].get_tti());
if (x > oldest_tti) {
oldest_idx = i;
oldest_tti = x;
}
}
}
if (oldest_idx >= 0) {
return &dl_harq[oldest_idx];
} else {
return NULL;
}
#else
return &dl_harq[tti%SCHED_MAX_HARQ_PROC];
#endif
}
dl_harq_proc* sched_ue::get_empty_dl_harq()
{
for (int i=0;i<SCHED_MAX_HARQ_PROC;i++) {
if (dl_harq[i].is_empty(0) && dl_harq[i].is_empty(1)) {
return &dl_harq[i];
}
}
return NULL;
}
ul_harq_proc* sched_ue::get_ul_harq(uint32_t tti)
{
return &ul_harq[tti%SCHED_MAX_HARQ_PROC];
}
srslte_dci_format_t sched_ue::get_dci_format() {
srslte_dci_format_t ret = SRSLTE_DCI_FORMAT1;
if (phy_config_dedicated_enabled) {
/* FIXME: Assumes UE-Specific Search Space (Not common) */
switch (dl_ant_info.tx_mode) {
case LIBLTE_RRC_TRANSMISSION_MODE_1:
case LIBLTE_RRC_TRANSMISSION_MODE_2:
ret = SRSLTE_DCI_FORMAT1;
break;
case LIBLTE_RRC_TRANSMISSION_MODE_3:
ret = SRSLTE_DCI_FORMAT2A;
break;
case LIBLTE_RRC_TRANSMISSION_MODE_4:
ret = SRSLTE_DCI_FORMAT2;
break;
case LIBLTE_RRC_TRANSMISSION_MODE_5:
case LIBLTE_RRC_TRANSMISSION_MODE_6:
case LIBLTE_RRC_TRANSMISSION_MODE_7:
case LIBLTE_RRC_TRANSMISSION_MODE_8:
case LIBLTE_RRC_TRANSMISSION_MODE_N_ITEMS:
default:
Warning("Incorrect transmission mode (rnti=%04x)\n", rnti);
}
}
return ret;
}
/* Find lowest DCI aggregation level supported by the UE spectral efficiency */
uint32_t sched_ue::get_aggr_level(uint32_t nof_bits)
{
uint32_t l=0;
float max_coderate = srslte_cqi_to_coderate(dl_cqi);
float coderate = 99;
float factor=1.5;
uint32_t l_max = 3;
if (cell.nof_prb == 6) {
factor = 1.0;
l_max = 2;
}
do {
coderate = srslte_pdcch_coderate(nof_bits, l);
l++;
} while(l<l_max && factor*coderate > max_coderate);
Debug("SCHED: CQI=%d, l=%d, nof_bits=%d, coderate=%.2f, max_coderate=%.2f\n", dl_cqi, l, nof_bits, coderate, max_coderate);
return l;
}
sched_ue::sched_dci_cce_t* sched_ue::get_locations(uint32_t cfi, uint32_t sf_idx)
{
if (cfi > 0 && cfi <= 3) {
return &dci_locations[cfi-1][sf_idx];
} else {
Error("SCHED: Invalid CFI=%d\n", cfi);
return &dci_locations[0][sf_idx];
}
}
/* Allocates first available RLC PDU */
int sched_ue::alloc_pdu(int tbs_bytes, sched_interface::dl_sched_pdu_t* pdu)
{
// TODO: Implement lcid priority (now lowest index is lowest priority)
int x = 0;
int i = 0;
for (i=0;i<sched_interface::MAX_LC && !x;i++) {
if (lch[i].buf_retx) {
x = SRSLTE_MIN(lch[i].buf_retx, tbs_bytes);
lch[i].buf_retx -= x;
} else if (lch[i].buf_tx) {
x = SRSLTE_MIN(lch[i].buf_tx, tbs_bytes);
lch[i].buf_tx -= x;
}
}
if (x) {
pdu->lcid = i-1;
pdu->nbytes = x;
Debug("SCHED: Allocated lcid=%d, nbytes=%d, tbs_bytes=%d\n", pdu->lcid, pdu->nbytes, tbs_bytes);
}
return x;
}
uint32_t sched_ue::format1_count_prb(uint32_t bitmask, uint32_t cell_nof_prb) {
uint32_t P = srslte_ra_type0_P(cell_nof_prb);
uint32_t nb = (int) ceilf((float) cell_nof_prb / P);
uint32_t nof_prb = 0;
for (uint32_t i = 0; i < nb; i++) {
if (bitmask & (1 << (nb - i - 1))) {
for (uint32_t j = 0; j < P; j++) {
if (i*P+j < cell_nof_prb) {
nof_prb++;
}
}
}
}
return nof_prb;
}
int sched_ue::cqi_to_tbs(uint32_t cqi, uint32_t nof_prb, uint32_t nof_re, uint32_t max_mcs, uint32_t max_Qm, uint32_t *mcs) {
float max_coderate = srslte_cqi_to_coderate(cqi);
int sel_mcs = max_mcs+1;
float coderate = 99;
float eff_coderate = 99;
uint32_t Qm = 1;
int tbs = 0;
do {
sel_mcs--;
uint32_t tbs_idx = srslte_ra_tbs_idx_from_mcs(sel_mcs);
tbs = srslte_ra_tbs_from_idx(tbs_idx, nof_prb);
coderate = srslte_coderate(tbs, nof_re);
Qm = SRSLTE_MIN(max_Qm, srslte_mod_bits_x_symbol(srslte_ra_mod_from_mcs(sel_mcs)));
eff_coderate = coderate/Qm;
} while((sel_mcs > 0 && coderate > max_coderate) || eff_coderate > 0.930);
if (mcs) {
*mcs = (uint32_t) sel_mcs;
}
return tbs;
}
int sched_ue::alloc_tbs_dl(uint32_t nof_prb,
uint32_t nof_re,
uint32_t req_bytes,
int *mcs)
{
return alloc_tbs(nof_prb, nof_re, req_bytes, false, mcs);
}
int sched_ue::alloc_tbs_ul(uint32_t nof_prb,
uint32_t nof_re,
uint32_t req_bytes,
int *mcs)
{
return alloc_tbs(nof_prb, nof_re, req_bytes, true, mcs);
}
/* In this scheduler we tend to use all the available bandwidth and select the MCS
* that approximates the minimum between the capacity and the requested rate
*/
int sched_ue::alloc_tbs(uint32_t nof_prb,
uint32_t nof_re,
uint32_t req_bytes,
bool is_ul,
int *mcs)
{
uint32_t sel_mcs = 0;
uint32_t cqi = is_ul?ul_cqi:dl_cqi;
uint32_t max_mcs = is_ul?max_mcs_ul:max_mcs_dl;
uint32_t max_Qm = is_ul?4:6; // Allow 16-QAM in PUSCH Only
// TODO: Compute real spectral efficiency based on PUSCH-UCI configuration
if (has_pucch && is_ul) {
cqi-=3;
}
int tbs = cqi_to_tbs(cqi, nof_prb, nof_re, max_mcs, max_Qm, &sel_mcs)/8;
/* If less bytes are requested, lower the MCS */
if (tbs > (int) req_bytes && req_bytes > 0) {
uint32_t req_tbs_idx = srslte_ra_tbs_to_table_idx(req_bytes*8, nof_prb);
uint32_t req_mcs = srslte_ra_mcs_from_tbs_idx(req_tbs_idx);
if (req_mcs < sel_mcs) {
sel_mcs = req_mcs;
tbs = srslte_ra_tbs_from_idx(req_tbs_idx, nof_prb)/8;
}
}
// Avoid the unusual case n_prb=1, mcs=6 tbs=328 (used in voip)
if (nof_prb == 1 && sel_mcs == 6) {
sel_mcs--;
}
if (mcs && tbs >= 0) {
*mcs = (int) sel_mcs;
}
return tbs;
}
}