You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/src/upper/pdcp_entity_base.cc

310 lines
9.9 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/upper/pdcp_entity_base.h"
#include "srslte/common/int_helpers.h"
#include "srslte/common/security.h"
#include <inttypes.h>
namespace srslte {
pdcp_entity_base::pdcp_entity_base(srslte::timer_handler* timers_, srslte::log* log_) : log(log_), timers(timers_) {}
pdcp_entity_base::~pdcp_entity_base() {}
void pdcp_entity_base::config_security(as_security_config_t sec_cfg_)
{
sec_cfg = sec_cfg_;
log->info("Configuring security with %s and %s\n",
integrity_algorithm_id_text[sec_cfg.integ_algo],
ciphering_algorithm_id_text[sec_cfg.cipher_algo]);
log->debug_hex(sec_cfg.k_rrc_enc.data(), 32, "K_rrc_enc");
log->debug_hex(sec_cfg.k_up_enc.data(), 32, "K_up_enc");
log->debug_hex(sec_cfg.k_rrc_int.data(), 32, "K_rrc_int");
log->debug_hex(sec_cfg.k_up_int.data(), 32, "K_up_int");
}
/****************************************************************************
* Security functions
***************************************************************************/
void pdcp_entity_base::integrity_generate(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* mac)
{
uint8_t* k_int;
// If control plane use RRC integrity key. If data use user plane key
if (is_srb()) {
k_int = sec_cfg.k_rrc_int.data();
} else {
k_int = sec_cfg.k_up_int.data();
}
switch (sec_cfg.integ_algo) {
case INTEGRITY_ALGORITHM_ID_EIA0:
break;
case INTEGRITY_ALGORITHM_ID_128_EIA1:
security_128_eia1(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac);
break;
case INTEGRITY_ALGORITHM_ID_128_EIA2:
security_128_eia2(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac);
break;
case INTEGRITY_ALGORITHM_ID_128_EIA3:
security_128_eia3(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac);
break;
default:
break;
}
log->debug("Integrity gen input: COUNT %" PRIu32 ", Bearer ID %d, Direction %s\n",
count,
cfg.bearer_id,
(cfg.tx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink"));
log->debug_hex(msg, msg_len, "Integrity gen input msg:");
log->debug_hex(mac, 4, "MAC (generated)");
}
bool pdcp_entity_base::integrity_verify(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* mac)
{
uint8_t mac_exp[4] = {};
bool is_valid = true;
uint8_t* k_int;
// If control plane use RRC integrity key. If data use user plane key
if (is_srb()) {
k_int = sec_cfg.k_rrc_int.data();
} else {
k_int = sec_cfg.k_up_int.data();
}
switch (sec_cfg.integ_algo) {
case INTEGRITY_ALGORITHM_ID_EIA0:
break;
case INTEGRITY_ALGORITHM_ID_128_EIA1:
security_128_eia1(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp);
break;
case INTEGRITY_ALGORITHM_ID_128_EIA2:
security_128_eia2(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp);
break;
case INTEGRITY_ALGORITHM_ID_128_EIA3:
security_128_eia3(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp);
break;
default:
break;
}
log->debug("Integrity check input: COUNT %" PRIu32 ", Bearer ID %d, Direction %s\n",
count,
cfg.bearer_id,
cfg.rx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink");
log->debug_hex(msg, msg_len, "Integrity check input msg:");
if (sec_cfg.integ_algo != INTEGRITY_ALGORITHM_ID_EIA0) {
for (uint8_t i = 0; i < 4; i++) {
if (mac[i] != mac_exp[i]) {
log->error_hex(mac_exp, 4, "MAC mismatch (expected)");
log->error_hex(mac, 4, "MAC mismatch (found)");
is_valid = false;
break;
}
}
if (is_valid) {
log->info_hex(mac_exp, 4, "MAC match");
}
}
return is_valid;
}
void pdcp_entity_base::cipher_encrypt(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* ct)
{
uint8_t* k_enc;
uint8_t ct_tmp[PDCP_MAX_SDU_SIZE];
// If control plane use RRC encrytion key. If data use user plane key
if (is_srb()) {
k_enc = sec_cfg.k_rrc_enc.data();
} else {
k_enc = sec_cfg.k_up_enc.data();
}
log->debug("Cipher encrypt input: COUNT: %" PRIu32 ", Bearer ID: %d, Direction %s\n",
count,
cfg.bearer_id,
cfg.tx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink");
log->debug_hex(msg, msg_len, "Cipher encrypt input msg");
switch (sec_cfg.cipher_algo) {
case CIPHERING_ALGORITHM_ID_EEA0:
break;
case CIPHERING_ALGORITHM_ID_128_EEA1:
security_128_eea1(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp);
memcpy(ct, ct_tmp, msg_len);
break;
case CIPHERING_ALGORITHM_ID_128_EEA2:
security_128_eea2(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp);
memcpy(ct, ct_tmp, msg_len);
break;
case CIPHERING_ALGORITHM_ID_128_EEA3:
security_128_eea3(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp);
memcpy(ct, ct_tmp, msg_len);
break;
default:
break;
}
log->debug_hex(ct, msg_len, "Cipher encrypt output msg");
}
void pdcp_entity_base::cipher_decrypt(uint8_t* ct, uint32_t ct_len, uint32_t count, uint8_t* msg)
{
uint8_t* k_enc;
uint8_t msg_tmp[PDCP_MAX_SDU_SIZE];
// If control plane use RRC encrytion key. If data use user plane key
if (is_srb()) {
k_enc = sec_cfg.k_rrc_enc.data();
} else {
k_enc = sec_cfg.k_up_enc.data();
}
log->debug("Cipher decrypt input: COUNT: %" PRIu32 ", Bearer ID: %d, Direction %s\n",
count,
cfg.bearer_id,
(cfg.rx_direction == SECURITY_DIRECTION_DOWNLINK) ? "Downlink" : "Uplink");
log->debug_hex(ct, ct_len, "Cipher decrypt input msg");
switch (sec_cfg.cipher_algo) {
case CIPHERING_ALGORITHM_ID_EEA0:
break;
case CIPHERING_ALGORITHM_ID_128_EEA1:
security_128_eea1(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp);
memcpy(msg, msg_tmp, ct_len);
break;
case CIPHERING_ALGORITHM_ID_128_EEA2:
security_128_eea2(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp);
memcpy(msg, msg_tmp, ct_len);
break;
case CIPHERING_ALGORITHM_ID_128_EEA3:
security_128_eea3(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp);
memcpy(msg, msg_tmp, ct_len);
break;
default:
break;
}
log->debug_hex(msg, ct_len, "Cipher decrypt output msg");
}
/****************************************************************************
* Common pack functions
***************************************************************************/
uint32_t pdcp_entity_base::read_data_header(const unique_byte_buffer_t& pdu)
{
// Check PDU is long enough to extract header
if (pdu->N_bytes <= cfg.hdr_len_bytes) {
log->error("PDU too small to extract header\n");
return 0;
}
// Extract RCVD_SN
uint16_t rcvd_sn_16 = 0;
uint32_t rcvd_sn_32 = 0;
switch (cfg.sn_len) {
case PDCP_SN_LEN_5:
rcvd_sn_32 = SN(pdu->msg[0]);
break;
case PDCP_SN_LEN_12:
srslte::uint8_to_uint16(pdu->msg, &rcvd_sn_16);
rcvd_sn_32 = SN(rcvd_sn_16);
break;
case PDCP_SN_LEN_18:
srslte::uint8_to_uint24(pdu->msg, &rcvd_sn_32);
rcvd_sn_32 = SN(rcvd_sn_32);
break;
default:
log->error("Cannot extract RCVD_SN, invalid SN length configured: %d\n", cfg.sn_len);
}
return rcvd_sn_32;
}
void pdcp_entity_base::discard_data_header(const unique_byte_buffer_t& pdu)
{
pdu->msg += cfg.hdr_len_bytes;
pdu->N_bytes -= cfg.hdr_len_bytes;
}
void pdcp_entity_base::write_data_header(const srslte::unique_byte_buffer_t& sdu, uint32_t count)
{
// Add room for header
if (cfg.hdr_len_bytes > sdu->get_headroom()) {
log->error("Not enough space to add header\n");
return;
}
sdu->msg -= cfg.hdr_len_bytes;
sdu->N_bytes += cfg.hdr_len_bytes;
// Add SN
switch (cfg.sn_len) {
case PDCP_SN_LEN_5:
sdu->msg[0] = SN(count); // Data PDU and SN LEN 5 implies SRB, D flag must not be present
break;
case PDCP_SN_LEN_12:
srslte::uint16_to_uint8(SN(count), sdu->msg);
if (is_drb()) {
sdu->msg[0] |= 0x80; // On Data PDUs for DRBs we must set the D flag.
}
break;
case PDCP_SN_LEN_18:
srslte::uint24_to_uint8(SN(count), sdu->msg);
sdu->msg[0] |= 0x80; // Data PDU and SN LEN 18 implies DRB, D flag must be present
break;
default:
log->error("Invalid SN length configuration: %d bits\n", cfg.sn_len);
}
}
void pdcp_entity_base::extract_mac(const unique_byte_buffer_t& pdu, uint8_t* mac)
{
// Check enough space for MAC
if (pdu->N_bytes < 4) {
log->error("PDU too small to extract MAC-I\n");
return;
}
// Extract MAC
memcpy(mac, &pdu->msg[pdu->N_bytes - 4], 4);
pdu->N_bytes -= 4;
}
void pdcp_entity_base::append_mac(const unique_byte_buffer_t& sdu, uint8_t* mac)
{
// Check enough space for MAC
if (sdu->N_bytes + 4 > sdu->get_tailroom()) {
log->error("Not enough space to add MAC-I\n");
return;
}
// Append MAC
memcpy(&sdu->msg[sdu->N_bytes], mac, 4);
sdu->N_bytes += 4;
}
} // namespace srslte