You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

456 lines
18 KiB
C

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_BAND_HELPER_H
#define SRSRAN_BAND_HELPER_H
#include "srsran/phy/common/phy_common_nr.h"
#include <array>
#include <stdint.h>
#include <vector>
namespace srsran {
// Helper class to handle frequency bands and ARFCNs
// For NR: NR-ARFCN and channel raster as per TS 38.104
class srsran_band_helper
{
public:
srsran_band_helper() = default;
~srsran_band_helper() = default;
// Return frequency of given NR-ARFCN in Hz
double nr_arfcn_to_freq(uint32_t nr_arfcn);
// Frequency in Hz to NR-ARFCN
uint32_t freq_to_nr_arfcn(double freq);
// Possible values of delta f_raster in Table 5.4.2.3-1 and Table 5.4.2.3-2
enum delta_f_raster_t {
DEFAULT = 0, // for bands with 2 possible values for delta_f_raster (e.g. 15 and 30 kHz), the lower is chosen
KHZ_15,
KHZ_30,
KHZ_60,
KHZ_100,
KHZ_120
};
// Return vector of bands that ARFCN is valid for
// For bands with 2 possible raster offsets, delta_f_raster needs to be specified
std::vector<uint32_t> get_bands_nr(uint32_t nr_arfcn, delta_f_raster_t delta_f_raster = DEFAULT);
/**
* @brief Get the lowest band that includes a given Downlink frequency in Hz
* @param dl_freq_Hz Given frequency in Hz
* @return The band number if the frequency is bounded in a band, UINT16_MAX otherwise
*/
uint16_t get_band_from_dl_freq_Hz(double dl_freq_Hz) const;
/**
* @brief Get the lowest band that includes a given Downlink ARFCN
* @param arfcn Given ARFCN
* @return The band number if the ARFCN is bounded in a band, UINT16_MAX otherwise
*/
uint16_t get_band_from_dl_arfcn(uint32_t arfcn) const;
/**
* @brief Get the respective UL ARFCN of a DL ARFCN
*
* For paired spectrum (FDD) the function returns the respective ARFCN in the same band.
* For unparied spectrum (TDD) the function returns the same ARFCN.
*
* @param dl_arfcn The DL ARFCN
* @return uint32_t the UL ARFCN
*/
uint32_t get_ul_arfcn_from_dl_arfcn(uint32_t dl_arfcn) const;
/**
* @brief Selects the SSB pattern case according to the band number and subcarrier spacing
* @remark Described by TS 38.101-1 Table 5.4.3.3-1: Applicable SS raster entries per operating band
* @param band NR Band number
* @param scs SSB Subcarrier spacing
* @return The SSB pattern case if band and subcarrier spacing match, SRSRAN_SSB_PATTERN_INVALID otherwise
*/
static srsran_ssb_pattern_t get_ssb_pattern(uint16_t band, srsran_subcarrier_spacing_t scs);
3 years ago
/**
* @brief Select the lower SSB subcarrier spacing valid for this band
* @param band NR band number
* @return The SSB subcarrier spacing
*/
srsran_subcarrier_spacing_t get_ssb_scs(uint16_t band) const;
/**
* @brief gets the NR band duplex mode
* @param band Given band
* @return A valid SRSRAN_DUPLEX_MODE if the band is valid, SRSRAN_DUPLEX_MODE_INVALID otherwise
*/
srsran_duplex_mode_t get_duplex_mode(uint16_t band) const;
/**
* @brief Compute the center frequency for a NR carrier from its bandwidth and the absolute pointA
*
* @param nof_prb Carrier bandwidth in number of RB
* @param freq_point_a_arfcn Absolute Point A frequency ARFCN
* @return double Frequency in Hz
*/
double get_center_freq_from_abs_freq_point_a(uint32_t nof_prb, uint32_t freq_point_a_arfcn);
/**
* @brief Compute the absolute pointA for a NR carrier from its bandwidth and the center frequency
*
* @param nof_prb Carrier bandwidth in number of RB
* @param center_freq double Frequency in Hz
* @return Absolute Point A frequency in Hz
*/
double get_abs_freq_point_a_from_center_freq(uint32_t nof_prb, double center_freq);
/**
* @brief Compute the absolute frequency point A for a arfcn
*
* @param band nr frequency band.
* @param nof_prb Number of PRBs.
* @param arfcn Given ARFCN.
* @return frequency point A in arfcn notation.
*/
uint32_t get_abs_freq_point_a_arfcn(uint32_t nof_prb, uint32_t arfcn);
/**
* @brief Compute the absolute frequency of the SSB for a DL ARFCN and a band. This selects an SSB center frequency
* following the band SS/PBCH frequency raster provided by TS38.104 table 5.4.3.1-1, which is the upper bound
* of the provided center frequency
*
* @param scs ssb subcarrier spacing.
* @param min_center_freq_hz center frequency above which the SSB absolute frequency must be.
* @return absolute frequency of the SSB in arfcn notation.
*/
uint32_t find_lower_bound_abs_freq_ssb(uint16_t band, srsran_subcarrier_spacing_t scs, uint32_t min_center_freq_hz);
/**
* @brief Compute the absolute frequency of the SSB for a DL ARFCN and a band. This finds an SSB center frequency
* following the band SS/PBCH frequency raster provided by TS38.104 table 5.4.3.1-1 as close as possible to PointA
* without letting any SS/PBCH subcarrier and CORESET#0 subcarrier (if RB offset is defined) below PointA
*
* @param scs ssb subcarrier spacing.
* @param freq_point_a_arfcn frequency point a in arfcn notation.
* @param coreset0_offset_rb CORESET#0 RB offset. See TS 38.213, Table 13-1,2,3
* @return absolute frequency of the SSB in arfcn notation.
*/
uint32_t get_abs_freq_ssb_arfcn(uint16_t band,
srsran_subcarrier_spacing_t scs,
uint32_t freq_point_a_arfcn,
uint32_t coreset0_offset_rb = 0);
/**
* @brief Compute SSB center frequency for NR carrier
* @param carrier Const Reference to a carrier struct including PRB, abs. frequency point A and carrier offset.
* @return double Frequency in Hz
*/
double get_ssb_center_freq(const srsran_carrier_nr_t& carrier);
class sync_raster_t
{
protected:
sync_raster_t(uint32_t gscn_f, uint32_t gscn_s, uint32_t gscn_l) :
gscn_first(gscn_f), gscn_step(gscn_s), gscn_last(gscn_l), gscn(gscn_f)
{
// see TS38.104 Table 5.4.3.1-1
if (gscn_last <= 7498) {
N_first = 1;
N_last = 2499;
} else if (7499 <= gscn_last and gscn_last <= 22255) {
N_last = 14756;
} else if (22256 <= gscn_last and gscn_last <= 26639) {
N_last = 4383;
}
N = N_first;
}
uint32_t gscn;
uint32_t N;
uint32_t M[3] = {1, 3, 5};
uint32_t M_idx = 0;
private:
uint32_t gscn_first;
uint32_t gscn_step;
uint32_t gscn_last;
uint32_t N_first = 0;
uint32_t N_last = 0;
public:
bool valid() const { return gscn_step != 0; }
void next()
{
if (gscn_last <= 7498 and M_idx < 3) {
M_idx += 1;
if (M_idx == 3 and N <= N_last) {
M_idx = 0;
N += 1;
}
} else if (N <= N_last) {
N += 1;
}
}
bool end() const { return (N > N_last or gscn_step == 0); }
void reset()
{
N = N_first;
M_idx = 0;
}
void gscn_next()
{
if (gscn <= gscn_last) {
gscn += gscn_step;
}
}
bool gscn_end() const { return (gscn > gscn_last or gscn_step == 0); }
void gscn_reset() { gscn = gscn_first; }
double get_frequency() const;
uint32_t get_gscn() const;
};
sync_raster_t get_sync_raster(uint16_t band, srsran_subcarrier_spacing_t scs) const;
private:
// internal helper
// Elements of TS 38.101-1 Table 5.2-1: NR operating bands in FR1
struct nr_operating_band {
uint16_t band;
uint32_t F_UL_low; // in MHz
uint32_t F_UL_high; // in MHz
uint32_t F_DL_low; // in MHz
uint32_t F_DL_high; // in MHz
srsran_duplex_mode_t duplex_mode;
};
static const uint32_t nof_nr_operating_band_fr1 = 32;
static constexpr std::array<nr_operating_band, nof_nr_operating_band_fr1> nr_operating_bands_fr1 = {{
// clang-format off
{1, 1920, 1080, 2110, 2170, SRSRAN_DUPLEX_MODE_FDD},
{2, 1850, 1810, 1930, 1990, SRSRAN_DUPLEX_MODE_FDD},
{3, 1710, 1785, 1805, 1880, SRSRAN_DUPLEX_MODE_FDD},
{5, 824, 849, 869, 894, SRSRAN_DUPLEX_MODE_FDD},
{7, 2500, 2570, 2620, 2690, SRSRAN_DUPLEX_MODE_FDD},
{8, 880, 915, 925, 960, SRSRAN_DUPLEX_MODE_FDD},
{12, 699, 716, 729, 746, SRSRAN_DUPLEX_MODE_FDD},
{20, 832, 862, 791, 821, SRSRAN_DUPLEX_MODE_FDD},
{25, 1850, 1915, 1930, 1995, SRSRAN_DUPLEX_MODE_FDD},
{28, 703, 748, 758, 803, SRSRAN_DUPLEX_MODE_FDD},
{34, 2010, 2025, 2010, 2025, SRSRAN_DUPLEX_MODE_TDD},
{38, 2570, 2620, 2570, 2620, SRSRAN_DUPLEX_MODE_TDD},
{39, 1880, 1920, 1880, 1920, SRSRAN_DUPLEX_MODE_TDD},
{40, 2300, 2400, 2300, 2400, SRSRAN_DUPLEX_MODE_TDD},
{41, 2496, 2690, 2496, 2690, SRSRAN_DUPLEX_MODE_TDD},
{50, 1432, 1517, 1432, 1517, SRSRAN_DUPLEX_MODE_TDD},
{51, 1427, 1432, 1427, 1432, SRSRAN_DUPLEX_MODE_TDD},
{66, 1710, 1780, 2110, 2200, SRSRAN_DUPLEX_MODE_FDD},
{70, 1695, 1710, 1995, 2020, SRSRAN_DUPLEX_MODE_FDD},
{71, 663, 698, 617, 652, SRSRAN_DUPLEX_MODE_FDD},
{74, 1427, 1470, 1475, 1518, SRSRAN_DUPLEX_MODE_FDD},
{75, 0, 0, 1432, 1517, SRSRAN_DUPLEX_MODE_SDL},
{76, 0, 0, 1427, 1432, SRSRAN_DUPLEX_MODE_SDL},
{77, 3300, 4200, 3300, 4200, SRSRAN_DUPLEX_MODE_TDD},
{78, 3300, 3800, 3300, 3800, SRSRAN_DUPLEX_MODE_TDD},
{79, 4400, 5000, 4400, 5000, SRSRAN_DUPLEX_MODE_TDD},
{80, 1710, 1785, 0, 0, SRSRAN_DUPLEX_MODE_SUL},
{81, 880, 915, 0, 0, SRSRAN_DUPLEX_MODE_SUL},
{82, 832, 862, 0, 0, SRSRAN_DUPLEX_MODE_SUL},
{83, 703, 748, 0, 0, SRSRAN_DUPLEX_MODE_SUL},
{84, 1920, 1980, 0, 0, SRSRAN_DUPLEX_MODE_SUL},
{86, 1710, 1780, 0, 0, SRSRAN_DUPLEX_MODE_SUL}
// clang-format on
}};
struct nr_raster_params {
double freq_range_start;
double freq_range_end;
double delta_F_global_kHz;
double F_REF_Offs_MHz;
uint32_t N_REF_Offs;
uint32_t N_REF_min;
uint32_t N_REF_max;
bool operator==(const nr_raster_params& rhs) const
{
return freq_range_start == rhs.freq_range_start && freq_range_end == rhs.freq_range_end &&
delta_F_global_kHz == rhs.delta_F_global_kHz && F_REF_Offs_MHz == rhs.F_REF_Offs_MHz &&
N_REF_Offs == rhs.N_REF_Offs && N_REF_min == rhs.N_REF_min && N_REF_max == rhs.N_REF_max;
}
};
// Helper to calculate F_REF according to Table 5.4.2.1-1
nr_raster_params get_raster_params(uint32_t nr_arfcn);
nr_raster_params get_raster_params(double freq);
bool is_valid_raster_param(const nr_raster_params& raster);
static const uint32_t max_nr_arfcn = 3279165;
static constexpr std::array<nr_raster_params, 3> nr_fr_params = {{
// clang-format off
// Frequency range 0 - 3000 MHz
{0, 3000, 5, 0.0, 0, 0, 599999},
// Frequency range 3000 - 24250 MHz
{3000, 24250, 15, 3000.0, 600000, 600000, 2016666},
// Frequency range 24250 - 100000 MHz
{24250, 100000, 60, 24250.08, 2016667, 2016667, max_nr_arfcn}
// clang-format on
}};
// Elements of Table 5.4.2.3-1 in TS 38.104
struct nr_band {
uint16_t band;
delta_f_raster_t delta_f_raster;
uint32_t ul_nref_first;
uint32_t ul_nref_step;
uint32_t ul_nref_last;
uint32_t dl_nref_first;
uint32_t dl_nref_step;
uint32_t dl_nref_last;
};
// List of NR bands for FR1 (Table 5.4.2.3-1)
// bands with more than one raster offset have multiple entries
static const uint32_t nof_nr_bands_fr1 = 36;
static constexpr std::array<nr_band, nof_nr_bands_fr1> nr_band_table_fr1 = {{
// clang-format off
{1, KHZ_100, 384000, 20, 396000, 422000, 20, 434000},
{2, KHZ_100, 370000, 20, 382000, 386000, 20, 398000},
{3, KHZ_100, 342000, 20, 357000, 361000, 20, 376000},
{5, KHZ_100, 164800, 20, 169800, 173800, 20, 178800},
{7, KHZ_100, 500000, 20, 514000, 524000, 20, 538000},
{8, KHZ_100, 176000, 20, 183000, 185000, 20, 192000},
{12, KHZ_100, 139800, 20, 143200, 145800, 20, 149200},
{20, KHZ_100, 166400, 20, 172400, 158200, 20, 164200},
{25, KHZ_100, 370000, 20, 383000, 386000, 20, 399000},
{28, KHZ_100, 140600, 20, 149600, 151600, 20, 160600},
{34, KHZ_100, 402000, 20, 405000, 402000, 20, 405000},
{38, KHZ_100, 514000, 20, 524000, 514000, 20, 524000},
{39, KHZ_100, 376000, 20, 384000, 376000, 20, 384000},
{40, KHZ_100, 460000, 20, 480000, 460000, 20, 480000},
{41, KHZ_15, 499200, 3, 537999, 499200, 3, 537999},
{41, KHZ_30, 499200, 6, 537996, 499200, 6, 537996},
{50, KHZ_100, 286400, 20, 303400, 286400, 20, 303400},
{51, KHZ_100, 285400, 20, 286400, 285400, 20, 286400},
{66, KHZ_100, 342000, 20, 356000, 422000, 20, 440000},
{70, KHZ_100, 339000, 20, 342000, 399000, 20, 404000},
{71, KHZ_100, 132600, 20, 139600, 123400, 20, 130400},
{74, KHZ_100, 285400, 20, 294000, 295000, 20, 303600},
{75, KHZ_100, 0, 0, 0, 286400, 20, 303400},
{76, KHZ_100, 0, 0, 0, 285400, 20, 286400},
{77, KHZ_15, 620000, 1, 680000, 620000, 1, 680000},
{77, KHZ_30, 620000, 2, 680000, 620000, 2, 680000},
{78, KHZ_15, 620000, 1, 653333, 620000, 1, 653333},
{78, KHZ_30, 620000, 2, 653332, 620000, 2, 653332},
{79, KHZ_15, 693334, 2, 733333, 693334, 2, 733333},
{79, KHZ_30, 693334, 2, 733332, 693334, 2, 733332},
{80, KHZ_100, 342000, 20, 357000, 0, 0, 0},
{81, KHZ_100, 176000, 20, 183000, 0, 0, 0},
{82, KHZ_100, 166400, 20, 172400, 0, 0, 0},
{83, KHZ_100, 140600, 20, 149600, 0, 0, 0},
{84, KHZ_100, 384000, 20, 396000, 0, 0, 0},
{86, KHZ_100, 342000, 20, 356000, 0, 0, 0}
// clang-format on
}};
static const uint32_t nof_nr_bands_fr2 = 8;
static constexpr std::array<nr_band, nof_nr_bands_fr2> nr_band_table_fr2 = {
{{257, KHZ_60, 2054166, 1, 2104165, 2054166, 1, 2104165},
{257, KHZ_120, 2054167, 2, 2104165, 2054167, 20, 2104165},
{258, KHZ_60, 2016667, 1, 2070832, 2016667, 1, 2070832},
{258, KHZ_120, 2016667, 2, 2070831, 2016667, 2, 2070832},
{260, KHZ_60, 2229166, 1, 2279165, 2229166, 1, 2279165},
{260, KHZ_120, 2229167, 2, 2279165, 2229167, 2, 2279165},
{261, KHZ_60, 2070833, 1, 2084999, 2070833, 1, 2084999},
{261, KHZ_120, 2070833, 2, 2084999, 2070833, 2, 2084999}}};
// Elements of TS 38.101-1 Table 5.4.3.3-1 : Applicable SS raster entries per operating band
struct nr_band_ss_raster {
uint16_t band;
srsran_subcarrier_spacing_t scs;
srsran_ssb_pattern_t pattern;
uint32_t gscn_first;
uint32_t gscn_step;
uint32_t gscn_last;
};
static const uint32_t nof_nr_band_ss_raster = 29;
static constexpr std::array<nr_band_ss_raster, nof_nr_band_ss_raster> nr_band_ss_raster_table = {{
{1, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5279, 1, 5419},
{2, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4829, 1, 4969},
{3, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4517, 1, 4693},
{5, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 2177, 1, 2230},
{5, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_B, 2183, 1, 2224},
{7, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6554, 1, 6718},
{8, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 2318, 1, 2395},
{12, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1828, 1, 1858},
{20, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1982, 1, 2047},
{25, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4829, 1, 4981},
{28, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1901, 1, 2002},
{34, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5030, 1, 5056},
{38, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6431, 1, 6544},
{39, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4706, 1, 4795},
{40, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5756, 1, 5995},
{41, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6246, 3, 6717},
{41, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 6252, 3, 6714},
{50, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3584, 1, 3787},
{51, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3572, 1, 3574},
{66, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5279, 1, 5494},
{66, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_B, 5285, 1, 5488},
{70, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4993, 1, 5044},
{71, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1547, 1, 1624},
{74, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3692, 1, 3790},
{75, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3584, 1, 3787},
{76, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3572, 1, 3574},
{77, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 7711, 1, 8329},
{78, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 7711, 1, 8051},
{79, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 8480, 16, 8880},
}};
};
} // namespace srsran
#endif // SRSRAN_BAND_HELPER_H