|
|
|
/**
|
|
|
|
* Copyright 2013-2021 Software Radio Systems Limited
|
|
|
|
*
|
|
|
|
* This file is part of srsRAN.
|
|
|
|
*
|
|
|
|
* srsRAN is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as
|
|
|
|
* published by the Free Software Foundation, either version 3 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* srsRAN is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
|
|
* and at http://www.gnu.org/licenses/.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "rlc_test_common.h"
|
|
|
|
#include "srsran/common/buffer_pool.h"
|
|
|
|
#include "srsran/common/rlc_pcap.h"
|
|
|
|
#include "srsran/common/test_common.h"
|
|
|
|
#include "srsran/common/threads.h"
|
|
|
|
#include "srsran/interfaces/ue_pdcp_interfaces.h"
|
|
|
|
#include "srsran/interfaces/ue_rrc_interfaces.h"
|
|
|
|
#include "srsran/rlc/rlc_am_nr.h"
|
|
|
|
|
|
|
|
#define NBUFS 5
|
|
|
|
#define HAVE_PCAP 0
|
|
|
|
#define SDU_SIZE 500
|
|
|
|
|
|
|
|
using namespace srsue;
|
|
|
|
using namespace srsran;
|
|
|
|
|
|
|
|
int basic_test_tx(rlc_am* rlc, byte_buffer_t pdu_bufs[NBUFS])
|
|
|
|
{
|
|
|
|
// Push 5 SDUs into RLC1
|
|
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
sdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
|
|
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
|
|
|
|
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
|
|
|
|
rlc->write_sdu(std::move(sdu_bufs[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(15, rlc->get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
|
|
|
|
|
|
|
|
// Read 5 PDUs from RLC1 (1 byte each)
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
uint32_t len = rlc->read_pdu(pdu_bufs[i].msg, 3); // 2 bytes for header + 1 byte payload
|
|
|
|
pdu_bufs[i].N_bytes = len;
|
|
|
|
TESTASSERT_EQ(3, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc->get_buffer_state());
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the limits of the TX/RX window checkers
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int window_checker_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
test_delimit_logger delimiter("window checkers");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// RLC1 RX_NEXT == 0 and RLC2 TX_NEXT_ACK == 0
|
|
|
|
uint32_t sn_inside_below = 0;
|
|
|
|
uint32_t sn_inside_above = 2047;
|
|
|
|
uint32_t sn_outside_below = 4095;
|
|
|
|
uint32_t sn_outside_above = 2048;
|
|
|
|
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
|
|
|
|
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
|
|
|
|
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
|
|
|
|
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
|
|
|
|
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
|
|
|
|
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
|
|
|
|
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
|
|
|
|
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
|
|
|
|
}
|
|
|
|
|
|
|
|
rlc_am_nr_rx_state_t rx_st = {};
|
|
|
|
rx_st.rx_next = 4095;
|
|
|
|
rlc_am_nr_tx_state_t tx_st = {};
|
|
|
|
tx_st.tx_next_ack = 4095;
|
|
|
|
|
|
|
|
rx->set_rx_state(rx_st);
|
|
|
|
tx->set_tx_state(tx_st);
|
|
|
|
|
|
|
|
{
|
|
|
|
// RX_NEXT == 4095 TX_NEXT_ACK == 4095
|
|
|
|
uint32_t sn_inside_below = 0;
|
|
|
|
uint32_t sn_inside_above = 2046;
|
|
|
|
uint32_t sn_outside_below = 4094;
|
|
|
|
uint32_t sn_outside_above = 2048;
|
|
|
|
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
|
|
|
|
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
|
|
|
|
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
|
|
|
|
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
|
|
|
|
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
|
|
|
|
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
|
|
|
|
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
|
|
|
|
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
|
|
|
|
}
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test is retx_segmentation required
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int retx_segmentation_required_checker_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
test_delimit_logger delimiter("retx segmentation required checkers");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
|
|
unique_byte_buffer_t pdu_bufs[NBUFS];
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
sdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
pdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
|
|
sdu_bufs[i]->N_bytes = 5; // Give each buffer a size of 1 byte
|
|
|
|
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
|
|
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
|
|
rlc1.read_pdu(pdu_bufs[i]->msg, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test full SDU retx
|
|
|
|
{
|
|
|
|
uint32_t nof_bytes = 8;
|
|
|
|
rlc_amd_retx_t retx = {};
|
|
|
|
retx.sn = 0;
|
|
|
|
retx.is_segment = false;
|
|
|
|
|
|
|
|
tx->is_retx_segmentation_required(retx, nof_bytes);
|
|
|
|
TESTASSERT_EQ(false, tx->is_retx_segmentation_required(retx, nof_bytes));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test SDU retx segmentation required
|
|
|
|
{
|
|
|
|
uint32_t nof_bytes = 4;
|
|
|
|
rlc_amd_retx_t retx;
|
|
|
|
retx.sn = 0;
|
|
|
|
retx.is_segment = false;
|
|
|
|
|
|
|
|
tx->is_retx_segmentation_required(retx, nof_bytes);
|
|
|
|
TESTASSERT_EQ(true, tx->is_retx_segmentation_required(retx, nof_bytes));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test full SDU segment retx
|
|
|
|
{
|
|
|
|
uint32_t nof_bytes = 40;
|
|
|
|
rlc_amd_retx_t retx = {};
|
|
|
|
retx.sn = 0;
|
|
|
|
retx.is_segment = true;
|
|
|
|
retx.so_start = 4;
|
|
|
|
retx.so_end = 6;
|
|
|
|
|
|
|
|
tx->is_retx_segmentation_required(retx, nof_bytes);
|
|
|
|
TESTASSERT_EQ(false, tx->is_retx_segmentation_required(retx, nof_bytes));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test SDU segment retx segmentation required
|
|
|
|
{
|
|
|
|
uint32_t nof_bytes = 4;
|
|
|
|
rlc_amd_retx_t retx = {};
|
|
|
|
retx.sn = 0;
|
|
|
|
retx.is_segment = true;
|
|
|
|
retx.so_start = 4;
|
|
|
|
retx.so_end = 6;
|
|
|
|
|
|
|
|
tx->is_retx_segmentation_required(retx, nof_bytes);
|
|
|
|
TESTASSERT_EQ(true, tx->is_retx_segmentation_required(retx, nof_bytes));
|
|
|
|
}
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the transmission and acknowledgement of 5 SDUs.
|
|
|
|
*
|
|
|
|
* Each SDU is transmitted as a single PDU.
|
|
|
|
* There are no lost PDUs, and the byte size is small, so the Poll_PDU configuration
|
|
|
|
* will trigger the status report.
|
|
|
|
* Poll PDU is configured to 4, so the 5th PDU should set the polling bit.
|
|
|
|
*/
|
|
|
|
int basic_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
test_delimit_logger delimiter("basic tx/rx");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
|
|
|
|
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
|
|
|
|
|
|
|
|
// before configuring entity
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
basic_test_tx(&rlc1, pdu_bufs);
|
|
|
|
|
|
|
|
// Write 5 PDUs into RLC2
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(3, rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 3);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the last SN that was not received.
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
|
|
|
|
// Check TX_NEXT_ACK
|
|
|
|
rlc_am_nr_tx_state_t st = tx1->get_tx_state();
|
|
|
|
TESTASSERT_EQ(5, st.tx_next_ack);
|
|
|
|
TESTASSERT_EQ(0, tx1->get_tx_window_size());
|
|
|
|
|
|
|
|
// Check statistics
|
|
|
|
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
|
|
|
|
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
|
|
|
|
|
|
|
|
// RLC1 PDU metrics
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
|
|
|
|
// RLC1 SDU metrics
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_pdus);
|
|
|
|
TESTASSERT_EQ(1, metrics1.num_rx_pdus); // One status PDU
|
|
|
|
TESTASSERT_EQ(15, metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
|
|
|
|
TESTASSERT_EQ(3, metrics1.num_rx_pdu_bytes); // One status PDU
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// RLC2 PDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
|
|
|
|
// RLC2 SDU metrics
|
|
|
|
TESTASSERT_EQ(1, metrics2.num_tx_pdus); // One status PDU
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 SDUs
|
|
|
|
TESTASSERT_EQ(3, metrics2.num_tx_pdu_bytes); // One status PDU
|
|
|
|
TESTASSERT_EQ(15, metrics2.num_rx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the loss of a single PDU.
|
|
|
|
* NACK should be visible in the status report.
|
|
|
|
* Retx after NACK should be present too.
|
|
|
|
*/
|
|
|
|
int lost_pdu_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
|
|
|
|
test_delimit_logger delimiter("lost PDU");
|
|
|
|
|
|
|
|
// before configuring entity
|
|
|
|
TESTASSERT(0 == rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
basic_test_tx(&rlc1, pdu_bufs);
|
|
|
|
|
|
|
|
// Write 5 PDUs into RLC2
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
if (i != 3) {
|
|
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only after t-reassembly has expired, will the status report include NACKs.
|
|
|
|
TESTASSERT_EQ(3, rlc2.get_buffer_state());
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 5);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT(0 == rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(3, status_check.ack_sn); // 3 is the next expected SN (i.e. the lost packet.)
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step timers until reassambly timeout expires
|
|
|
|
for (int cnt = 0; cnt < 35; cnt++) {
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
|
|
|
|
// t-reassembly has expired. There should be a NACK in the status report.
|
|
|
|
TESTASSERT_EQ(5, rlc2.get_buffer_state());
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 5);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
|
|
|
|
TESTASSERT_EQ(1, status_check.N_nack); // We lost one PDU.
|
|
|
|
TESTASSERT_EQ(3, status_check.nacks[0].nack_sn); // Lost PDU SN=3.
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
|
|
|
|
// Check there is an Retx of SN=3
|
|
|
|
TESTASSERT_EQ(3, rlc1.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Check correct re-transmission
|
|
|
|
byte_buffer_t retx_buf;
|
|
|
|
int len = rlc1.read_pdu(retx_buf.msg, 3);
|
|
|
|
retx_buf.N_bytes = len;
|
|
|
|
TESTASSERT_EQ(3, len);
|
|
|
|
|
|
|
|
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check statistics
|
|
|
|
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
|
|
|
|
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
|
|
|
|
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(5 + 1, metrics1.num_tx_pdus); // One re-transmission
|
|
|
|
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // One status PDU
|
|
|
|
TESTASSERT_EQ(18, metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) + 1 rext (3) = 18
|
|
|
|
TESTASSERT_EQ(3 + 5, metrics1.num_rx_pdu_bytes); // Two status PDU (one with a NACK)
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
|
|
|
|
TESTASSERT_EQ(5 + 3, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
|
|
|
|
TESTASSERT_EQ(15, metrics2.num_rx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the basic segmentation of a single SDU.
|
|
|
|
* A single SDU of 3 bytes is segmented into 3 PDUs
|
|
|
|
*/
|
|
|
|
int basic_segmentation_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
test_delimit_logger delimiter("basic segmentation");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
|
|
|
|
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
|
|
|
|
|
|
|
|
// before configuring entity
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push 1 SDU into RLC1
|
|
|
|
unique_byte_buffer_t sdu;
|
|
|
|
sdu = srsran::make_byte_buffer();
|
|
|
|
TESTASSERT(nullptr != sdu);
|
|
|
|
sdu->msg[0] = 0; // Write the index into the buffer
|
|
|
|
sdu->N_bytes = 3; // Give the SDU the size of 3 bytes
|
|
|
|
sdu->md.pdcp_sn = 0; // PDCP SN for notifications
|
|
|
|
rlc1.write_sdu(std::move(sdu));
|
|
|
|
|
|
|
|
// Read 3 PDUs
|
|
|
|
constexpr uint16_t n_pdus = 3;
|
|
|
|
unique_byte_buffer_t pdu_bufs[n_pdus];
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
pdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
TESTASSERT(nullptr != pdu_bufs[i]);
|
|
|
|
if (i == 0) {
|
|
|
|
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, 3);
|
|
|
|
TESTASSERT_EQ(3, pdu_bufs[i]->N_bytes);
|
|
|
|
} else {
|
|
|
|
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, 5);
|
|
|
|
TESTASSERT_EQ(5, pdu_bufs[i]->N_bytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write 5 PDUs into RLC2
|
|
|
|
for (int i = 0; i < n_pdus; i++) {
|
|
|
|
rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); // Don't write RLC_SN=3.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check statistics
|
|
|
|
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
|
|
|
|
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
|
|
|
|
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(1, metrics2.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(3, metrics2.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_pdus);
|
|
|
|
TESTASSERT_EQ(3, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
|
|
|
|
TESTASSERT_EQ(13, metrics2.num_rx_pdu_bytes); // 1 PDU (No SO) + 2 PDUs (with SO) = 3 + 2*5
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// Check state
|
|
|
|
rlc_am_nr_tx_state_t state1_tx = tx1->get_tx_state();
|
|
|
|
TESTASSERT_EQ(1, state1_tx.tx_next);
|
|
|
|
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int segment_retx_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
|
|
|
|
test_delimit_logger delimiter("segment retx PDU");
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
|
|
|
|
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
|
|
|
|
|
|
|
|
// before configuring entity
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push 5 SDUs into RLC1
|
|
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
sdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
|
|
sdu_bufs[i]->N_bytes = 3; // Give each buffer a size of 3 bytes
|
|
|
|
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
|
|
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(25, rlc1.get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) = 25
|
|
|
|
|
|
|
|
// Read 5 PDUs from RLC1 (1 byte each)
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
uint32_t len = rlc1.read_pdu(pdu_bufs[i].msg, 5); // 2 bytes for header + 3 byte payload
|
|
|
|
pdu_bufs[i].N_bytes = len;
|
|
|
|
TESTASSERT_EQ(5, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
// Write 5 PDUs into RLC2
|
|
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
|
|
if (i != 3) {
|
|
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only after t-reassembly has expired, will the status report include NACKs.
|
|
|
|
TESTASSERT_EQ(3, rlc2.get_buffer_state());
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 5);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(3, status_check.ack_sn); // 3 is the next expected SN (i.e. the lost packet.)
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step timers until reassambly timeout expires
|
|
|
|
for (int cnt = 0; cnt < 35; cnt++) {
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
|
|
|
|
// t-reassembly has expired. There should be a NACK in the status report.
|
|
|
|
TESTASSERT_EQ(5, rlc2.get_buffer_state());
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 5);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
|
|
|
|
TESTASSERT_EQ(1, status_check.N_nack); // We lost one PDU.
|
|
|
|
TESTASSERT_EQ(3, status_check.nacks[0].nack_sn); // Lost PDU SN=3.
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
|
|
|
|
// Check there is an Retx of SN=3
|
|
|
|
TESTASSERT_EQ(5, rlc1.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Re-transmit PDU in 3 segments
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
byte_buffer_t retx_buf;
|
|
|
|
uint32_t len = 0;
|
|
|
|
if (i == 0) {
|
|
|
|
len = rlc1.read_pdu(retx_buf.msg, 3);
|
|
|
|
TESTASSERT_EQ(3, len);
|
|
|
|
} else {
|
|
|
|
len = rlc1.read_pdu(retx_buf.msg, 5);
|
|
|
|
TESTASSERT_EQ(5, len);
|
|
|
|
}
|
|
|
|
retx_buf.N_bytes = len;
|
|
|
|
|
|
|
|
rlc_am_nr_pdu_header_t header_check = {};
|
|
|
|
uint32_t hdr_len = rlc_am_nr_read_data_pdu_header(&retx_buf, rlc_am_nr_sn_size_t::size12bits, &header_check);
|
|
|
|
// Double check header.
|
|
|
|
TESTASSERT_EQ(3, header_check.sn); // Double check RETX SN
|
|
|
|
if (i == 0) {
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::first_segment, header_check.si);
|
|
|
|
} else if (i == 1) {
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::neither_first_nor_last_segment, header_check.si);
|
|
|
|
} else {
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::last_segment, header_check.si);
|
|
|
|
}
|
|
|
|
|
|
|
|
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
|
|
|
|
}
|
|
|
|
TESTASSERT(0 == rlc1.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check statistics
|
|
|
|
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
|
|
|
|
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
|
|
|
|
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(15, metrics1.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(5 + 3, metrics1.num_tx_pdus); // 3 re-transmissions
|
|
|
|
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
|
|
|
|
TESTASSERT_EQ(38, metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) +
|
|
|
|
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 38
|
|
|
|
TESTASSERT_EQ(3 + 5, metrics1.num_rx_pdu_bytes); // Two status PDU (one with a NACK)
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(15, metrics2.num_rx_sdu_bytes); // 5 SDUs, 3 bytes each
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
|
|
|
|
TESTASSERT_EQ(7, metrics2.num_rx_pdus); // 7 PDUs (8 tx'ed, but one was lost)
|
|
|
|
TESTASSERT_EQ(5 + 3, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
|
|
|
|
TESTASSERT_EQ(33, metrics2.num_rx_pdu_bytes); // 2 Bytes * (NBUFFS-1) (header size) + (NBUFFS-1) * 3 (data)
|
|
|
|
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 33
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// Check state
|
|
|
|
rlc_am_nr_rx_state_t state2_rx = rx2->get_rx_state();
|
|
|
|
TESTASSERT_EQ(5, state2_rx.rx_next);
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int retx_segment_test()
|
|
|
|
{
|
|
|
|
rlc_am_tester tester;
|
|
|
|
timer_handler timers(8);
|
|
|
|
|
|
|
|
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
|
|
|
|
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
|
|
|
|
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
|
|
|
|
test_delimit_logger delimiter("retx segment PDU");
|
|
|
|
|
|
|
|
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
|
|
|
|
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
|
|
|
|
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
|
|
|
|
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
|
|
|
|
|
|
|
|
// before configuring entity
|
|
|
|
TESTASSERT(0 == rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int n_sdu_bufs = 5;
|
|
|
|
int n_pdu_bufs = 15;
|
|
|
|
|
|
|
|
// Push 5 SDUs into RLC1
|
|
|
|
std::vector<unique_byte_buffer_t> sdu_bufs(n_sdu_bufs);
|
|
|
|
for (int i = 0; i < n_sdu_bufs; i++) {
|
|
|
|
sdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
|
|
sdu_bufs[i]->N_bytes = 3; // Give each buffer a size of 3 bytes
|
|
|
|
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
|
|
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT(25 == rlc1.get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) = 25
|
|
|
|
|
|
|
|
// Read 15 PDUs from RLC1
|
|
|
|
std::vector<unique_byte_buffer_t> pdu_bufs(n_pdu_bufs);
|
|
|
|
for (int i = 0; i < n_pdu_bufs; i++) {
|
|
|
|
pdu_bufs[i] = srsran::make_byte_buffer();
|
|
|
|
if (i == 0 || i == 3 || i == 6 || i == 9 || i == 12) {
|
|
|
|
// First segment, no SO
|
|
|
|
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 3); // 2 bytes for header + 1 byte payload
|
|
|
|
pdu_bufs[i]->N_bytes = len;
|
|
|
|
TESTASSERT_EQ(3, len);
|
|
|
|
} else {
|
|
|
|
// Middle or last segment, SO present
|
|
|
|
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 5); // 4 bytes for header + 1 byte payload
|
|
|
|
pdu_bufs[i]->N_bytes = len;
|
|
|
|
TESTASSERT_EQ(5, len);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
|
|
|
|
// Write 15 - 3 PDUs into RLC2
|
|
|
|
for (int i = 0; i < n_pdu_bufs; i++) {
|
|
|
|
if (i != 3 && i != 7 && i != 11) {
|
|
|
|
rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); // Lose first segment of RLC_SN=1.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only after t-reassembly has expired, will the status report include NACKs.
|
|
|
|
TESTASSERT_EQ(3, rlc2.get_buffer_state());
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 5);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(1, status_check.ack_sn); // 1 is the next expected SN (i.e. the first lost packet.)
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step timers until reassambly timeout expires
|
|
|
|
for (int cnt = 0; cnt < 35; cnt++) {
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
|
|
|
|
// t-reassembly has expired. There should be a NACK in the status report.
|
|
|
|
// There should be 3 NACKs with SO_start and SO_end
|
|
|
|
TESTASSERT_EQ(21, rlc2.get_buffer_state()); // 3 bytes for fixed header (ACK+E1) + 3 * 6 for NACK with SO = 21.
|
|
|
|
{
|
|
|
|
// Read status PDU from RLC2
|
|
|
|
byte_buffer_t status_buf;
|
|
|
|
int len = rlc2.read_pdu(status_buf.msg, 21);
|
|
|
|
status_buf.N_bytes = len;
|
|
|
|
|
|
|
|
TESTASSERT_EQ(0, rlc2.get_buffer_state());
|
|
|
|
|
|
|
|
// Assert status is correct
|
|
|
|
rlc_am_nr_status_pdu_t status_check = {};
|
|
|
|
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
|
|
|
|
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
|
|
|
|
TESTASSERT_EQ(3, status_check.N_nack); // We lost one PDU.
|
|
|
|
TESTASSERT_EQ(1, status_check.nacks[0].nack_sn); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(true, status_check.nacks[0].has_so); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(0, status_check.nacks[0].so_start); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(1, status_check.nacks[0].so_end); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(2, status_check.nacks[1].nack_sn); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(true, status_check.nacks[1].has_so); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(1, status_check.nacks[1].so_start); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(2, status_check.nacks[1].so_end); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(3, status_check.nacks[2].nack_sn); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(true, status_check.nacks[2].has_so); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(2, status_check.nacks[2].so_start); // Lost SDU on SN=1.
|
|
|
|
TESTASSERT_EQ(0xFFFF, status_check.nacks[2].so_end); // Lost SDU on SN=1.
|
|
|
|
|
|
|
|
// Write status PDU to RLC1
|
|
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
|
|
|
|
// Check there is an Retx of SN=3
|
|
|
|
TESTASSERT_EQ(5, rlc1.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Re-transmit the 3 lost segments
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
byte_buffer_t retx_buf;
|
|
|
|
uint32_t len = 0;
|
|
|
|
if (i == 0) {
|
|
|
|
len = rlc1.read_pdu(retx_buf.msg, 3);
|
|
|
|
TESTASSERT_EQ(3, len);
|
|
|
|
} else {
|
|
|
|
len = rlc1.read_pdu(retx_buf.msg, 5);
|
|
|
|
TESTASSERT_EQ(5, len);
|
|
|
|
}
|
|
|
|
retx_buf.N_bytes = len;
|
|
|
|
|
|
|
|
rlc_am_nr_pdu_header_t header_check = {};
|
|
|
|
uint32_t hdr_len = rlc_am_nr_read_data_pdu_header(&retx_buf, rlc_am_nr_sn_size_t::size12bits, &header_check);
|
|
|
|
// Double check header.
|
|
|
|
if (i == 0) {
|
|
|
|
TESTASSERT_EQ(1, header_check.sn); // Double check RETX SN
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::first_segment, header_check.si);
|
|
|
|
} else if (i == 1) {
|
|
|
|
TESTASSERT_EQ(2, header_check.sn); // Double check RETX SN
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::neither_first_nor_last_segment, header_check.si);
|
|
|
|
} else {
|
|
|
|
TESTASSERT_EQ(3, header_check.sn); // Double check RETX SN
|
|
|
|
TESTASSERT_EQ(rlc_nr_si_field_t::last_segment, header_check.si);
|
|
|
|
}
|
|
|
|
|
|
|
|
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
|
|
|
|
}
|
|
|
|
TESTASSERT_EQ(0, rlc1.get_buffer_state());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check statistics
|
|
|
|
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
|
|
|
|
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
|
|
|
|
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(15, metrics1.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
|
|
|
|
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(15 + 3, metrics1.num_tx_pdus); // 15 PDUs + 3 re-transmissions
|
|
|
|
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
|
|
|
|
TESTASSERT_EQ(78, metrics1.num_tx_pdu_bytes); // 3 Bytes * 5 (5 PDUs without SO) + 10 * 5 (10 PDUs with SO)
|
|
|
|
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 78
|
|
|
|
TESTASSERT_EQ(24, metrics1.num_rx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
|
|
|
|
// Another with 3 NACKs all with SO. (3 + 3*6 bytes)
|
|
|
|
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// PDU metrics
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
|
|
|
|
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
|
|
|
|
TESTASSERT_EQ(15, metrics2.num_rx_sdu_bytes); // 5 SDUs, 3 bytes each
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
|
|
|
|
// SDU metrics
|
|
|
|
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
|
|
|
|
TESTASSERT_EQ(15, metrics2.num_rx_pdus); // 15 PDUs (18 tx'ed, but three were lost)
|
|
|
|
TESTASSERT_EQ(24, metrics2.num_tx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
|
|
|
|
// Another with 3 NACKs all with SO. (3 + 3*6 bytes)
|
|
|
|
TESTASSERT_EQ(65, metrics2.num_rx_pdu_bytes); // 3 Bytes (header + data size, without SO) * 5 (N PDUs without SO)
|
|
|
|
// 5 bytes (header + data size, with SO) * 10 (N PDUs with SO)
|
|
|
|
// = 81 bytes
|
|
|
|
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
|
|
|
|
|
|
|
|
// Check state
|
|
|
|
rlc_am_nr_rx_state_t state2_rx = rx2->get_rx_state();
|
|
|
|
TESTASSERT_EQ(5, state2_rx.rx_next);
|
|
|
|
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
// Setup the log message spy to intercept error and warning log entries from RLC
|
|
|
|
if (!srslog::install_custom_sink(srsran::log_sink_message_spy::name(),
|
|
|
|
std::unique_ptr<srsran::log_sink_message_spy>(
|
|
|
|
new srsran::log_sink_message_spy(srslog::get_default_log_formatter())))) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto* spy = static_cast<srsran::log_sink_message_spy*>(srslog::find_sink(srsran::log_sink_message_spy::name()));
|
|
|
|
if (spy == nullptr) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
srslog::set_default_sink(*spy);
|
|
|
|
|
|
|
|
auto& logger_rlc1 = srslog::fetch_basic_logger("RLC_AM_1", *spy, false);
|
|
|
|
auto& logger_rlc2 = srslog::fetch_basic_logger("RLC_AM_2", *spy, false);
|
|
|
|
logger_rlc1.set_hex_dump_max_size(100);
|
|
|
|
logger_rlc2.set_hex_dump_max_size(100);
|
|
|
|
logger_rlc1.set_level(srslog::basic_levels::debug);
|
|
|
|
logger_rlc2.set_level(srslog::basic_levels::debug);
|
|
|
|
|
|
|
|
// start log back-end
|
|
|
|
srslog::init();
|
|
|
|
TESTASSERT(window_checker_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(retx_segmentation_required_checker_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(basic_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(lost_pdu_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(basic_segmentation_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(segment_retx_test() == SRSRAN_SUCCESS);
|
|
|
|
TESTASSERT(retx_segment_test() == SRSRAN_SUCCESS);
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|