|
|
|
/*
|
|
|
|
* Copyright 2013-2020 Software Radio Systems Limited
|
|
|
|
*
|
|
|
|
* This file is part of srsLTE.
|
|
|
|
*
|
|
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as
|
|
|
|
* published by the Free Software Foundation, either version 3 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
|
|
* and at http://www.gnu.org/licenses/.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "radio_metrics.h"
|
|
|
|
#include "srslte/common/interfaces_common.h"
|
|
|
|
#include "srslte/common/log_filter.h"
|
|
|
|
#include "srslte/common/trace.h"
|
|
|
|
#include "srslte/interfaces/radio_interfaces.h"
|
|
|
|
#include "srslte/phy/rf/rf.h"
|
|
|
|
#include "srslte/srslte.h"
|
|
|
|
#include <list>
|
|
|
|
|
|
|
|
#ifndef SRSLTE_RADIO_H
|
|
|
|
#define SRSLTE_RADIO_H
|
|
|
|
|
|
|
|
namespace srslte {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Implemenation of the rf_buffer_interface for the current radio implementation which uses flat arrays.
|
|
|
|
* @see rf_buffer_interface
|
|
|
|
* @see radio
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
class rf_buffer_t : public rf_buffer_interface
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* Creates an object and allocates memory for nof_subframes_ assuming the
|
|
|
|
* largest system bandwidth
|
|
|
|
* @param nof_subframes_ Number of subframes to allocate
|
|
|
|
*/
|
|
|
|
explicit rf_buffer_t(uint32_t nof_subframes_)
|
|
|
|
{
|
|
|
|
if (nof_subframes_ > 0) {
|
|
|
|
// Allocate buffers for an integer number of subframes
|
|
|
|
for (uint32_t i = 0; i < SRSLTE_MAX_CHANNELS; i++) {
|
|
|
|
sample_buffer[i] = srslte_vec_cf_malloc(nof_subframes_ * SRSLTE_SF_LEN_MAX);
|
|
|
|
srslte_vec_cf_zero(sample_buffer[i], SRSLTE_SF_LEN_MAX);
|
|
|
|
}
|
|
|
|
allocated = true;
|
|
|
|
nof_subframes = nof_subframes_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Creates an object and sets the buffers to the flat array pointed by data. Note that data must
|
|
|
|
* contain up to SRSLTE_MAX_CHANNELS pointers
|
|
|
|
* @param data Flat array to use as initializer for the internal buffer pointers
|
|
|
|
*/
|
|
|
|
explicit rf_buffer_t(cf_t* data[SRSLTE_MAX_CHANNELS])
|
|
|
|
{
|
|
|
|
for (uint32_t i = 0; i < SRSLTE_MAX_CHANNELS; i++) {
|
|
|
|
sample_buffer[i] = data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Creates an object from a single array pointer. The rest of the channel pointers will be left to NULL
|
|
|
|
* @param data Flat array to use as initializer for the internal buffer pointers
|
|
|
|
*/
|
|
|
|
explicit rf_buffer_t(cf_t* data) { sample_buffer[0] = data; }
|
|
|
|
/**
|
|
|
|
* Default constructor leaves the internal pointers to NULL
|
|
|
|
*/
|
|
|
|
rf_buffer_t() = default;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The destructor will deallocate memory only if it was allocated passing nof_subframes > 0
|
|
|
|
*/
|
|
|
|
~rf_buffer_t()
|
|
|
|
{
|
|
|
|
if (allocated) {
|
|
|
|
free_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Overrides the = operator such that the lvalue internal buffers point to the pointers inside rvalue.
|
|
|
|
* If memory has already been allocated in the lvalue object, it will free it before pointing the
|
|
|
|
* buffers to the lvalue.
|
|
|
|
* After this operator, when the lvalue is destroyed no memory will be freed.
|
|
|
|
* @param other rvalue
|
|
|
|
* @return lvalue
|
|
|
|
*/
|
|
|
|
rf_buffer_t& operator=(const rf_buffer_t& other)
|
|
|
|
{
|
|
|
|
if (this == &other) {
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
if (this->allocated) {
|
|
|
|
free_all();
|
|
|
|
this->allocated = false;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < SRSLTE_MAX_CHANNELS; i++) {
|
|
|
|
this->sample_buffer[i] = other.sample_buffer[i];
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
rf_buffer_t(const rf_buffer_t& other) = delete;
|
|
|
|
cf_t* get(const uint32_t& channel_idx) const override { return sample_buffer.at(channel_idx); }
|
|
|
|
void set(const uint32_t& channel_idx, cf_t* ptr) override { sample_buffer.at(channel_idx) = ptr; }
|
|
|
|
cf_t* get(const uint32_t& logical_ch, const uint32_t& port_idx, const uint32_t& nof_antennas) const override
|
|
|
|
{
|
|
|
|
return sample_buffer.at(logical_ch * nof_antennas + port_idx);
|
|
|
|
}
|
|
|
|
void set(const uint32_t& logical_ch, const uint32_t& port_idx, const uint32_t& nof_antennas, cf_t* ptr) override
|
|
|
|
{
|
|
|
|
sample_buffer.at(logical_ch * nof_antennas + port_idx) = ptr;
|
|
|
|
}
|
|
|
|
void** to_void() override { return (void**)sample_buffer.data(); }
|
|
|
|
cf_t** to_cf_t() override { return sample_buffer.data(); }
|
|
|
|
uint32_t size() override { return nof_subframes * SRSLTE_SF_LEN_MAX; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::array<cf_t*, SRSLTE_MAX_CHANNELS> sample_buffer = {};
|
|
|
|
bool allocated = false;
|
|
|
|
uint32_t nof_subframes = 0;
|
|
|
|
void free_all()
|
|
|
|
{
|
|
|
|
for (uint32_t i = 0; i < SRSLTE_MAX_CHANNELS; i++) {
|
|
|
|
if (sample_buffer[i]) {
|
|
|
|
free(sample_buffer[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Implementation of the radio interface for the PHY
|
|
|
|
*
|
|
|
|
* It uses the rf C library object to access the underlying radio. This implementation uses a flat array to
|
|
|
|
* transmit/receive samples for all RF channels. The N carriers and P antennas are mapped into M=NP RF channels (M <=
|
|
|
|
* SRSLTE_MAX_CHANNELS). Note that all carriers must have the same number of antennas.
|
|
|
|
*
|
|
|
|
* The underlying radio receives and transmits M RF channels synchronously from possibly multiple radios using the same
|
|
|
|
* rf driver object. In the current implementation, the mapping between N carriers and P antennas is sequentially, eg:
|
|
|
|
* [carrier_0_port_0, carrier_0_port_1, carrier_1_port_0, carrier_1_port_1, ..., carrier_N_port_N]
|
|
|
|
*/
|
|
|
|
class radio : public radio_interface_phy
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
radio(srslte::log_filter* log_h);
|
|
|
|
radio(srslte::logger* logger_h);
|
|
|
|
virtual ~radio();
|
|
|
|
|
|
|
|
int init(const rf_args_t& args_, phy_interface_radio* phy_);
|
|
|
|
void stop();
|
|
|
|
|
|
|
|
// ==== PHY interface ===
|
|
|
|
|
|
|
|
// trx functions
|
|
|
|
void tx_end() override;
|
|
|
|
bool tx(rf_buffer_interface& buffer, const uint32_t& nof_samples, const srslte_timestamp_t& tx_time) override;
|
|
|
|
bool rx_now(rf_buffer_interface& buffer, const uint32_t& nof_samples, srslte_timestamp_t* rxd_time) override;
|
|
|
|
|
|
|
|
// setter
|
|
|
|
void set_tx_freq(const uint32_t& carrier_idx, const double& freq) override;
|
|
|
|
void set_rx_freq(const uint32_t& carrier_idx, const double& freq) override;
|
|
|
|
void release_freq(const uint32_t& carrier_idx) override;
|
|
|
|
|
|
|
|
void set_tx_gain(const float& gain) override;
|
|
|
|
void set_rx_gain_th(const float& gain) override;
|
|
|
|
void set_rx_gain(const float& gain) override;
|
|
|
|
void set_tx_srate(const double& srate) override;
|
|
|
|
void set_rx_srate(const double& srate) override;
|
|
|
|
|
|
|
|
// getter
|
|
|
|
double get_freq_offset() override;
|
|
|
|
float get_rx_gain() override;
|
|
|
|
bool is_continuous_tx() override;
|
|
|
|
bool get_is_start_of_burst() override;
|
|
|
|
bool is_init() override;
|
|
|
|
void reset() override;
|
|
|
|
srslte_rf_info_t* get_info() override;
|
|
|
|
|
|
|
|
// Other functions
|
|
|
|
bool get_metrics(rf_metrics_t* metrics);
|
|
|
|
float get_rssi();
|
|
|
|
bool has_rssi();
|
|
|
|
void get_time(srslte_timestamp_t* now);
|
|
|
|
|
|
|
|
void handle_rf_msg(srslte_rf_error_t error);
|
|
|
|
static void rf_msg_callback(void* arg, srslte_rf_error_t error);
|
|
|
|
|
|
|
|
private:
|
|
|
|
srslte_rf_t rf_device = {};
|
|
|
|
srslte_rf_info_t rf_info = {};
|
|
|
|
rf_metrics_t rf_metrics = {};
|
|
|
|
log_filter log_local = {};
|
|
|
|
log_filter* log_h = nullptr;
|
|
|
|
srslte::logger* logger = nullptr;
|
|
|
|
phy_interface_radio* phy = nullptr;
|
|
|
|
cf_t* zeros = nullptr;
|
|
|
|
|
|
|
|
srslte_timestamp_t end_of_burst_time = {};
|
|
|
|
bool is_start_of_burst = 0;
|
|
|
|
uint32_t tx_adv_nsamples = 0;
|
|
|
|
double tx_adv_sec = 0.0f; // Transmission time advance to compensate for antenna->timestamp delay
|
|
|
|
bool tx_adv_auto = false;
|
|
|
|
bool tx_adv_negative = false;
|
|
|
|
bool is_initialized = false;
|
|
|
|
bool radio_is_streaming = false;
|
|
|
|
bool continuous_tx = false;
|
|
|
|
double freq_offset = 0.0f;
|
|
|
|
double cur_tx_srate = 0.0f;
|
|
|
|
uint32_t nof_antennas = 0;
|
|
|
|
uint32_t nof_channels = 0;
|
|
|
|
uint32_t nof_carriers = 0;
|
|
|
|
|
|
|
|
std::vector<double> cur_tx_freqs = {};
|
|
|
|
std::vector<double> cur_rx_freqs = {};
|
|
|
|
|
|
|
|
constexpr static double tx_max_gap_zeros = 4e-3; ///< Maximum transmission gap to fill with zeros, otherwise the burst
|
|
|
|
///< shall be stopped
|
|
|
|
|
|
|
|
// Define default values for known radios
|
|
|
|
constexpr static double uhd_default_tx_adv_samples = 98;
|
|
|
|
constexpr static double uhd_default_tx_adv_offset_sec = 4 * 1e-6;
|
|
|
|
|
|
|
|
constexpr static int blade_default_tx_adv_samples = 27;
|
|
|
|
constexpr static double blade_default_tx_adv_offset_sec = 1e-6;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This class manages the mapping between logical and physical channels.
|
|
|
|
* A physical channel in this class is a carrier index in the radio class, which
|
|
|
|
* has multiple antenna ports all tuned to the same frequency.
|
|
|
|
*
|
|
|
|
* Every group of channels tuned associated with a carrier go through the same band-pass filter. This
|
|
|
|
* class then manages the allocation of frequencies to these group of channels.
|
|
|
|
*
|
|
|
|
* The same object is reused for the reception and transmission.
|
|
|
|
*
|
|
|
|
* When the UE wants to tune a logical channel to a new frequency it requests this class
|
|
|
|
* to provide an available channel that supports this frequency. At that point,
|
|
|
|
* that channel can not be used anymore until a call to release().
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
class channel_mapping
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/** Configures a band. A band is defined by an upper and lower frequency boundaries.
|
|
|
|
* If the upper and lower frequencies are not configured (default is zero), it means
|
|
|
|
* that they support any frequency
|
|
|
|
*/
|
|
|
|
class band_cfg
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void set(float low_freq_, float high_freq_)
|
|
|
|
{
|
|
|
|
low_freq = low_freq_;
|
|
|
|
high_freq = high_freq_;
|
|
|
|
}
|
|
|
|
bool contains(float freq)
|
|
|
|
{
|
|
|
|
if (low_freq == 0 && high_freq == 0) {
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return freq >= low_freq && freq <= high_freq;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float get_low() { return low_freq; }
|
|
|
|
float get_high() { return high_freq; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float low_freq = 0;
|
|
|
|
float high_freq = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
/** Each channel is defined by the band it supports and the physical carrier index in the radio
|
|
|
|
*/
|
|
|
|
typedef struct {
|
|
|
|
band_cfg band;
|
|
|
|
uint32_t carrier_idx;
|
|
|
|
} channel_cfg_t;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets the channel configuration. If no channels are configured no physical channels can be allocated
|
|
|
|
* @param channels_
|
|
|
|
*/
|
|
|
|
void set_channels(const std::list<channel_cfg_t>& channels_) { available_channels = channels_; }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Finds an unused physical channel that supports the provided frequency and assigns it to logical channel
|
|
|
|
* logical_ch
|
|
|
|
* @param logical_ch logical channel index
|
|
|
|
* @param freq Frequency (in Hz) that we want to receive/transmitt
|
|
|
|
* @return true if a physical channel supporting this frequency was found or false otherwise
|
|
|
|
*/
|
|
|
|
bool allocate_freq(const uint32_t& logical_ch, const float& freq);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Releases the allocation of a logical channel allowing to be used in the next call to allocate_freq
|
|
|
|
* @param logical_ch logical channel index
|
|
|
|
* @return false if logical_ch is not allocated, true otherwise
|
|
|
|
*/
|
|
|
|
bool release_freq(const uint32_t& logical_ch);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Obtains the carrier index configured in set_channels() in the radio to which the logical channel logical_ch has
|
|
|
|
* been mapped to
|
|
|
|
* @param logical_ch logical channel index
|
|
|
|
* @return <0 if logical_ch is not allocated, true otherwise
|
|
|
|
*
|
|
|
|
* @see channel_cfg_t
|
|
|
|
*/
|
|
|
|
int get_carrier_idx(const uint32_t& logical_ch);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks if the channel has been allocated using allocate_freq()
|
|
|
|
*
|
|
|
|
* @param logical_ch logical channel index
|
|
|
|
* @return true if the channel is allocated, false otherwise
|
|
|
|
*/
|
|
|
|
bool is_allocated(const uint32_t& logical_ch);
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::list<channel_cfg_t> available_channels = {};
|
|
|
|
std::map<uint32_t, channel_cfg_t> allocated_channels = {};
|
|
|
|
std::mutex mutex = {};
|
|
|
|
};
|
|
|
|
|
|
|
|
channel_mapping rx_channel_mapping = {}, tx_channel_mapping = {};
|
|
|
|
|
|
|
|
bool map_channels(channel_mapping& map,
|
|
|
|
uint32_t sample_offset,
|
|
|
|
const rf_buffer_interface& buffer,
|
|
|
|
void* radio_buffers[SRSLTE_MAX_CHANNELS]);
|
|
|
|
bool start_agc(bool tx_gain_same_rx = false);
|
|
|
|
void set_tx_adv(int nsamples);
|
|
|
|
void set_tx_adv_neg(bool tx_adv_is_neg);
|
|
|
|
bool config_rf_channels(const rf_args_t& args);
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace srslte
|
|
|
|
|
|
|
|
#endif // SRSLTE_RADIO_H
|