You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

555 lines
14 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#include "liblte/phy/phy.h"
//#define DISABLE_UHD
#ifndef DISABLE_UHD
#include "liblte/cuhd/cuhd.h"
#endif
#define MHZ 1000000
#define SAMP_FREQ 1920000
#define RSSI_FS 1000000
#define FLEN 9600
#define FLEN_PERIOD 0.005
#define RSSI_DECIM 20
#define IS_SIGNAL(i) (10*log10f(rssi[i]) + 30 > rssi_threshold)
int band, earfcn=-1;
float find_threshold = 10.0;
int earfcn_start=-1, earfcn_end = -1;
float rssi_threshold = -45.0;
int max_track_lost=9;
int nof_frames_find=20, nof_frames_track=100, nof_samples_rssi=50000;
int track_len=500;
cf_t *input_buffer, *fft_buffer, *ce[MAX_PORTS];
pbch_t pbch;
lte_fft_t fft;
chest_t chest;
sync_t ssync;
cfo_t cfocorr;
float *cfo_v;
int *idx_v, *idx_valid, *t;
float *p2a_v;
void *uhd;
int nof_bands;
float uhd_gain = 20.0;
#define MAX_EARFCN 1000
lte_earfcn_t channels[MAX_EARFCN];
float rssi[MAX_EARFCN];
float rssi_d[MAX_EARFCN/RSSI_DECIM];
float freqs[MAX_EARFCN];
float cfo[MAX_EARFCN];
float p2a[MAX_EARFCN];
enum sync_state {INIT, FIND, TRACK, MIB, DONE};
void usage(char *prog) {
printf("Usage: %s [seRrFfTgv] -b band\n", prog);
printf("\t-s earfcn_start [Default All]\n");
printf("\t-e earfcn_end [Default All]\n");
printf("\t-R rssi_nof_samples [Default %d]\n", nof_samples_rssi);
printf("\t-r rssi_threshold [Default %.2f dBm]\n", rssi_threshold);
printf("\t-F pss_find_nof_frames [Default %d]\n", nof_frames_find);
printf("\t-f pss_find_threshold [Default %.2f]\n", find_threshold);
printf("\t-T pss_track_nof_frames [Default %d]\n", nof_frames_track);
printf("\t-l pss_track_len [Default %d]\n", track_len);
printf("\t-g gain [Default %.2f dB]\n", uhd_gain);
printf("\t-v [set verbose to debug, default none]\n");
}
void parse_args(int argc, char **argv) {
int opt;
while ((opt = getopt(argc, argv, "bseRrFfTgv")) != -1) {
switch(opt) {
case 'b':
band = atoi(argv[optind]);
break;
case 's':
earfcn_start = atoi(argv[optind]);
break;
case 'e':
earfcn_end = atoi(argv[optind]);
break;
case 'R':
nof_samples_rssi = atoi(argv[optind]);
break;
case 'r':
rssi_threshold = -atof(argv[optind]);
break;
case 'F':
nof_frames_find = atoi(argv[optind]);
break;
case 'f':
find_threshold = atof(argv[optind]);
break;
case 'T':
nof_frames_track = atoi(argv[optind]);
break;
case 'g':
uhd_gain = atof(argv[optind]);
break;
case 'v':
verbose++;
break;
default:
usage(argv[0]);
exit(-1);
}
}
}
int base_init(int frame_length) {
int i;
input_buffer = malloc(2 * frame_length * sizeof(cf_t));
if (!input_buffer) {
perror("malloc");
return -1;
}
fft_buffer = malloc(CPNORM_NSYMB * 72 * sizeof(cf_t));
if (!fft_buffer) {
perror("malloc");
return -1;
}
for (i=0;i<MAX_PORTS;i++) {
ce[i] = malloc(CPNORM_NSYMB * 72 * sizeof(cf_t));
if (!ce[i]) {
perror("malloc");
return -1;
}
}
if (sync_init(&ssync, FLEN, 128, 128)) {
fprintf(stderr, "Error initiating PSS/SSS\n");
return -1;
}
if (chest_init(&chest, CPNORM, 6, MAX_PORTS)) {
fprintf(stderr, "Error initializing equalizer\n");
return -1;
}
if (lte_fft_init(&fft, CPNORM, 6)) {
fprintf(stderr, "Error initializing FFT\n");
return -1;
}
if (cfo_init(&cfocorr, FLEN)) {
fprintf(stderr, "Error initiating CFO\n");
return -1;
}
idx_v = malloc(nof_frames_track * sizeof(int));
if (!idx_v) {
perror("malloc");
return -1;
}
idx_valid = malloc(nof_frames_track * sizeof(int));
if (!idx_valid) {
perror("malloc");
return -1;
}
t = malloc(nof_frames_track * sizeof(int));
if (!t) {
perror("malloc");
return -1;
}
cfo_v = malloc(nof_frames_track * sizeof(float));
if (!cfo_v) {
perror("malloc");
return -1;
}
p2a_v = malloc(nof_frames_track * sizeof(float));
if (!p2a_v) {
perror("malloc");
return -1;
}
bzero(cfo, sizeof(float) * MAX_EARFCN);
bzero(p2a, sizeof(float) * MAX_EARFCN);
/* open UHD device */
#ifndef DISABLE_UHD
printf("Opening UHD device...\n");
if (cuhd_open("",&uhd)) {
fprintf(stderr, "Error opening uhd\n");
return -1;
}
#endif
return 0;
}
void base_free() {
int i;
#ifndef DISABLE_UHD
cuhd_close(uhd);
#endif
sync_free(&ssync);
lte_fft_free(&fft);
chest_free(&chest);
cfo_free(&cfocorr);
free(input_buffer);
free(fft_buffer);
for (i=0;i<MAX_PORTS;i++) {
free(ce[i]);
}
free(idx_v);
free(idx_valid);
free(t);
free(cfo_v);
free(p2a_v);
}
float mean_valid(int *idx_v, float *x, int nof_frames) {
int i;
float mean = 0;
int n = 0;
for (i=0;i<nof_frames;i++) {
if (idx_v[i] != -1) {
mean += x[i];
n++;
}
}
if (n > 0) {
return mean/n;
} else {
return 0.0;
}
}
int preprocess_idx(int *in, int *out, int *period, int len) {
int i, n;
n=0;
for (i=0;i<len;i++) {
if (in[i] != -1) {
out[n] = in[i];
period[n] = i;
n++;
}
}
return n;
}
int rssi_scan() {
int n=0;
int i;
if (nof_bands > 100) {
/* scan every Mhz, that is 10 freqs */
for (i=0;i<nof_bands;i+=RSSI_DECIM) {
freqs[n] = channels[i].fd * MHZ;
n++;
}
#ifndef DISABLE_UHD
if (cuhd_rssi_scan(uhd, freqs, rssi_d, n, (double) RSSI_FS, nof_samples_rssi)) {
fprintf(stderr, "Error while doing RSSI scan\n");
return -1;
}
#endif
/* linearly interpolate the rssi vector */
interp_linear_f(rssi_d, rssi, RSSI_DECIM, n);
} else {
for (i=0;i<nof_bands;i++) {
freqs[i] = channels[i].fd * MHZ;
}
#ifndef DISABLE_UHD
if (cuhd_rssi_scan(uhd, freqs, rssi, nof_bands, (double) RSSI_FS, nof_samples_rssi)) {
fprintf(stderr, "Error while doing RSSI scan\n");
return -1;
}
#endif
n = nof_bands;
}
return n;
}
int mib_decoder_init(int cell_id) {
lte_cell_t cell;
cell.id = cell_id;
cell.nof_prb = 6;
cell.nof_ports = 2;
cell.cp = CPNORM;
if (chest_ref_LTEDL(&chest, cell)) {
fprintf(stderr, "Error initializing reference signal\n");
return -1;
}
if (pbch_init(&pbch, cell)) {
fprintf(stderr, "Error initiating PBCH\n");
return -1;
}
DEBUG("PBCH initiated cell_id=%d\n", cell_id);
return 0;
}
int mib_decoder_run(cf_t *input, pbch_mib_t *mib) {
int i;
lte_fft_run_slot(&fft, input, fft_buffer);
/* Get channel estimates for each port */
for (i=0;i<MAX_PORTS;i++) {
chest_ce_slot_port(&chest, fft_buffer, ce[i], 1, i);
}
DEBUG("Decoding PBCH\n", 0);
return pbch_decode(&pbch, fft_buffer, ce, mib);
}
int main(int argc, char **argv) {
int frame_cnt, valid_frames;
int freq;
int cell_id;
float max_peak_to_avg;
float sfo;
uint32_t track_idx, find_idx;
int last_found;
enum sync_state state;
int n;
int mib_attempts;
int nslot;
pbch_mib_t mib;
int ret;
if (argc < 3) {
usage(argv[0]);
exit(-1);
}
parse_args(argc,argv);
if (base_init(FLEN)) {
fprintf(stderr, "Error initializing memory\n");
exit(-1);
}
sync_pss_det_peak_to_avg(&ssync);
nof_bands = lte_band_get_fd_band(band, channels, earfcn_start, earfcn_end, MAX_EARFCN);
printf("RSSI scan: %d freqs in band %d, RSSI threshold %.2f dBm\n", nof_bands, band, rssi_threshold);
n = rssi_scan();
if (n == -1) {
exit(-1);
}
printf("\nDone. Starting PSS search on %d channels\n", n);
usleep(500000);
INFO("Setting sampling frequency %.2f MHz\n", (float) SAMP_FREQ/MHZ);
#ifndef DISABLE_UHD
cuhd_set_rx_srate(uhd, SAMP_FREQ);
cuhd_set_rx_gain(uhd, uhd_gain);
#endif
freq=0;
state = INIT;
nslot = 0;
sfo = 0;
find_idx = 0;
frame_cnt = 0;
max_peak_to_avg = -1;
last_found = 0;
cell_id = 0;
while(freq<nof_bands) {
/* scan only bands above rssi_threshold */
if (!IS_SIGNAL(freq)) {
INFO("[%3d/%d]: Skipping EARFCN %d %.2f MHz RSSI %.2f dB\n", freq, nof_bands,
channels[freq].id, channels[freq].fd,10*log10f(rssi[freq]) + 30);
freq++;
} else {
if (state != INIT && state != DONE) {
#ifndef DISABLE_UHD
DEBUG(" ----- RECEIVING %d SAMPLES ---- \n", FLEN);
cuhd_recv(uhd, &input_buffer[FLEN], FLEN, 1);
#endif
}
switch(state) {
case INIT:
DEBUG("Stopping receiver...\n",0);
#ifndef DISABLE_UHD
cuhd_stop_rx_stream(uhd);
/* set freq */
cuhd_set_rx_freq(uhd, (double) channels[freq].fd * MHZ);
cuhd_rx_wait_lo_locked(uhd);
DEBUG("Set freq to %.3f MHz\n", (double) channels[freq].fd);
DEBUG("Starting receiver...\n",0);
cuhd_start_rx_stream(uhd);
#endif
/* init variables */
frame_cnt = 0;
max_peak_to_avg = -1;
cell_id = -1;
/* receive first frame */
#ifndef DISABLE_UHD
cuhd_recv(uhd, input_buffer, FLEN, 1);
#endif
/* set find_threshold and go to FIND state */
sync_set_threshold(&ssync, find_threshold, find_threshold/2);
state = FIND;
break;
case FIND:
/* find peak in all frame */
ret = sync_find(&ssync, &input_buffer[FLEN], &find_idx);
10 years ago
DEBUG("[%3d/%d]: PAR=%.2f\n", freq, nof_bands, sync_get_peak_value(&ssync));
if (ret == 1) {
/* if found peak, go to track and set lower threshold */
frame_cnt = -1;
last_found = 0;
max_peak_to_avg = -1;
cell_id = sync_get_cell_id(&ssync);
state = TRACK;
INFO("[%3d/%d]: EARFCN %d Freq. %.2f MHz PSS found PAR %.2f dB\n", freq, nof_bands,
channels[freq].id, channels[freq].fd,
10 years ago
10*log10f(sync_get_peak_value(&ssync)));
} else {
if (frame_cnt >= nof_frames_find) {
state = INIT;
freq++;
}
}
break;
case TRACK:
INFO("Tracking PSS find_idx %d offset %d\n", find_idx, find_idx - track_len);
ret = sync_track(&ssync, input_buffer, FLEN + find_idx - track_len, &track_idx);
10 years ago
p2a_v[frame_cnt] = sync_get_peak_value(&ssync);
/* save cell id for the best peak-to-avg */
if (p2a_v[frame_cnt] > max_peak_to_avg) {
max_peak_to_avg = p2a_v[frame_cnt];
cell_id = sync_get_cell_id(&ssync);
}
if (ret == 1) {
cfo_v[frame_cnt] = sync_get_cfo(&ssync);
last_found = frame_cnt;
find_idx += track_idx - track_len;
idx_v[frame_cnt] = find_idx;
nslot = sync_get_slot_id(&ssync);
} else {
idx_v[frame_cnt] = -1;
cfo_v[frame_cnt] = 0.0;
}
/* if we missed to many PSS it is not a cell, next freq */
if (frame_cnt - last_found > max_track_lost) {
INFO("\n[%3d/%d]: EARFCN %d Freq. %.2f MHz %d frames lost\n", freq, nof_bands,
channels[freq].id, channels[freq].fd, frame_cnt - last_found);
state = INIT;
freq++;
} else if (frame_cnt >= nof_frames_track) {
mib_decoder_init(cell_id);
cfo[freq] = mean_valid(idx_v, cfo_v, frame_cnt);
p2a[freq] = mean_valid(idx_v, p2a_v, frame_cnt);
valid_frames = preprocess_idx(idx_v, idx_valid, t, frame_cnt);
sfo = sfo_estimate_period(idx_valid, t, valid_frames, FLEN_PERIOD);
state = MIB;
nslot=(nslot+10)%20;
}
break;
case MIB:
INFO("Finding MIB at freq %.2f Mhz offset=%d, cell_id=%d, slot_idx=%d\n", channels[freq].fd, find_idx, cell_id, nslot);
// TODO: Correct SFO
// Correct CFO
INFO("Correcting CFO=%.4f\n", cfo[freq]);
cfo_correct(&cfocorr, &input_buffer[FLEN], &input_buffer[FLEN], (-cfo[freq])/128);
if (nslot == 0) {
if (mib_decoder_run(&input_buffer[FLEN+find_idx], &mib)) {
INFO("MIB detected attempt=%d\n", mib_attempts);
state = DONE;
} else {
INFO("MIB not detected attempt=%d\n", mib_attempts);
if (mib_attempts == 0) {
freq++;
state = INIT;
}
}
mib_attempts++;
}
nslot = (nslot+10)%20;
break;
case DONE:
printf("\n[%3d/%d]: FOUND EARFCN %d Freq. %.2f MHz. "
"PAR %2.2f dB, CFO=%+.2f KHz, SFO=%+2.3f KHz, CELL_ID=%3d\n", freq, nof_bands,
channels[freq].id, channels[freq].fd,
10*log10f(p2a[freq]), cfo[freq] * 15, sfo / 1000, cell_id);
pbch_mib_fprint(stdout, &mib);
state = INIT;
freq++;
break;
}
/** FIXME: This is not necessary at all */
if (state == TRACK || state == FIND) {
memcpy(input_buffer, &input_buffer[FLEN], FLEN * sizeof(cf_t));
}
frame_cnt++;
}
}
base_free();
printf("\n\nDone\n");
exit(0);
}