You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsue/test/phy/phy_worker_test.cc

234 lines
8.1 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <srslte/srslte.h>
#include <srsue/hdr/phy/phy.h>
class phy_test_bench
{
private:
// Dummy classes
class dummy_stack : public srsue::stack_interface_phy_lte
{
private:
srslte::log_filter log_h;
uint16_t rnti = 0x3c;
public:
// Local test access methods
explicit dummy_stack(srslte::logger& logger) : log_h("stack", &logger) {}
void set_rnti(uint16_t rnti_) { rnti = rnti_; }
// Implemented methods
void in_sync() override { log_h.info("in-sync received\n"); }
void out_of_sync() override { log_h.info("out-of-sync received\n"); }
void new_phy_meas(float rsrp, float rsrq, uint32_t tti, int earfcn, int pci) override
{
log_h.info("New measurement earfcn=%d; pci=%d; rsrp=%+.1fdBm; rsrq=%+.1fdB;\n", earfcn, pci, rsrp, rsrq);
}
uint16_t get_dl_sched_rnti(uint32_t tti) override { return rnti; }
uint16_t get_ul_sched_rnti(uint32_t tti) override { return rnti; }
void new_grant_ul(uint32_t cc_idx, mac_grant_ul_t grant, tb_action_ul_t* action) override
{
action->tb.enabled = true;
}
void new_grant_dl(uint32_t cc_idx, mac_grant_dl_t grant, tb_action_dl_t* action) override
{
for (auto& i : action->tb) {
i.enabled = true;
}
}
void tb_decoded(uint32_t cc_idx, mac_grant_dl_t grant, bool* ack) override {}
void bch_decoded_ok(uint8_t* payload, uint32_t len) override {}
void mch_decoded(uint32_t len, bool crc) override {}
void new_mch_dl(srslte_pdsch_grant_t phy_grant, tb_action_dl_t* action) override {}
void set_mbsfn_config(uint32_t nof_mbsfn_services) override {}
void run_tti(const uint32_t tti) override { log_h.info("Run TTI %d\n", tti); }
};
class dummy_radio : public srslte::radio_interface_phy
{
private:
srslte::log_filter log_h;
std::vector<srslte_ringbuffer_t> ring_buffers;
float base_srate = 0.0f;
float tx_srate = 0.0f;
float rx_srate = 0.0f;
float rx_gain = 0.0f;
float tx_freq = 0.0f;
float rx_freq = 0.0f;
cf_t* temp_buffer = nullptr;
uint64_t rx_timestamp = 0;
public:
dummy_radio(srslte::logger& logger, uint32_t nof_channels, float base_srate_) :
log_h("radio", &logger),
ring_buffers(nof_channels),
base_srate(base_srate_)
{
// Create Ring buffers
for (auto& rb : ring_buffers) {
if (srslte_ringbuffer_init(&rb, (uint32_t)sizeof(cf_t) * SRSLTE_SF_LEN_MAX)) {
perror("init softbuffer");
}
}
// Create temporal buffer
}
void write_ring_buffers(cf_t** buffer, uint32_t nsamples)
{
for (uint32_t i = 0; i < ring_buffers.size(); i++) {
if (srslte_ringbuffer_write_timed(&ring_buffers[i], buffer[i], sizeof(cf_t) * nsamples, 1000) < 0) {
perror("writing ring buffer");
}
}
}
bool tx(const uint32_t& radio_idx,
cf_t** buffer,
const uint32_t& nof_samples,
const srslte_timestamp_t& tx_time) override
{
return false;
}
void tx_end() override {}
bool
rx_now(const uint32_t& radio_idx, cf_t** buffer, const uint32_t& nof_samples, srslte_timestamp_t* rxd_time) override
{
if (base_srate > rx_srate) {
// Decimate
uint32_t decimation = base_srate / rx_srate;
for (uint32_t i = 0; i < ring_buffers.size(); i++) {
}
}
return true;
}
void set_tx_freq(const uint32_t& radio_idx, const uint32_t& channel_idx, const double& freq) override
{
tx_freq = (float)freq;
}
void set_rx_freq(const uint32_t& radio_idx, const uint32_t& channel_idx, const double& freq) override
{
rx_freq = (float)freq;
}
float set_rx_gain_th(const float& gain) override
{
rx_gain = srslte_convert_dB_to_amplitude(gain);
return srslte_convert_amplitude_to_dB(rx_gain);
}
void set_rx_gain(const uint32_t& radio_idx, const float& gain) override
{
rx_gain = srslte_convert_dB_to_amplitude(gain);
}
void set_tx_srate(const uint32_t& radio_idx, const double& srate) override { tx_srate = (float)srate; }
void set_rx_srate(const uint32_t& radio_idx, const double& srate) override { rx_srate = (float)srate; }
float get_rx_gain(const uint32_t& radio_idx) override { return srslte_convert_amplitude_to_dB(rx_gain); }
double get_freq_offset() override { return 0; }
double get_tx_freq(const uint32_t& radio_idx) override { return tx_freq; }
double get_rx_freq(const uint32_t& radio_idx) override { return rx_freq; }
float get_max_tx_power() override { return 0; }
float get_tx_gain_offset() override { return 0; }
float get_rx_gain_offset() override { return 0; }
bool is_continuous_tx() override { return false; }
bool get_is_start_of_burst(const uint32_t& radio_idx) override { return false; }
bool is_init() override { return false; }
void reset() override {}
srslte_rf_info_t* get_info(const uint32_t& radio_idx) override { return nullptr; }
};
// Common instances
srslte::logger_stdout main_logger;
// Dummy instances
dummy_stack stack;
dummy_radio radio;
// Phy Instances
srsue::phy phy;
// eNb
srslte_enb_dl_t enb_dl = {};
cf_t* enb_dl_buffer[SRSLTE_MAX_PORTS] = {};
srslte_dl_sf_cfg_t dl_sf_cfg = {};
uint64_t sfn = 0; // System Frame Number
uint32_t sf_len = 0;
public:
explicit phy_test_bench(const srsue::phy_args_t& phy_args, const srslte_cell_t& cell) :
stack(main_logger),
radio(main_logger, cell.nof_ports, srslte_sampling_freq_hz(cell.nof_prb)),
phy(&main_logger)
{
// Deduce physical attributes
sf_len = SRSLTE_SF_LEN_PRB(cell.nof_prb);
// Initialise UE
phy.init(phy_args, &stack, &radio);
// Initialise DL baseband buffers
for (uint32_t i = 0; i < phy_args.nof_rx_ant; i++) {
enb_dl_buffer[i] = srslte_vec_cf_malloc(sf_len);
if (!enb_dl_buffer[i]) {
perror("malloc");
}
}
// Initialise eNb DL
srslte_enb_dl_init(&enb_dl, enb_dl_buffer, cell.nof_prb);
srslte_enb_dl_set_cell(&enb_dl, cell);
}
void run_dl_tti()
{
// Generate baseband signal
srslte_enb_dl_put_base(&enb_dl, &dl_sf_cfg);
// Write baseband to radio
radio.write_ring_buffers(enb_dl_buffer, sf_len);
// Increase TTI
dl_sf_cfg.tti++;
// Increase System Frame number
if (dl_sf_cfg.tti >= 10240) {
dl_sf_cfg.tti = 0;
sfn++;
}
}
};
int main(int argc, char** argv)
{
int ret = SRSLTE_SUCCESS;
srslte_cell_t cell = {.nof_prb = 6,
.nof_ports = 1,
.id = 1,
.cp = SRSLTE_CP_NORM,
.phich_length = SRSLTE_PHICH_NORM,
.phich_resources = SRSLTE_PHICH_R_1,
.frame_type = SRSLTE_FDD};
srsue::phy_args_t phy_args = {};
phy_test_bench phy_test(phy_args, cell);
return ret;
}