mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
6.7 KiB
Matlab
214 lines
6.7 KiB
Matlab
10 years ago
|
%% LTE Downlink Channel Estimation and Equalization
|
||
|
|
||
|
%% Cell-Wide Settings
|
||
|
|
||
|
clear
|
||
|
|
||
|
SNR_values_db=15;%linspace(5,20,8);
|
||
|
Nrealizations=1;
|
||
|
|
||
|
preEVM = zeros(length(SNR_values_db),Nrealizations);
|
||
|
postEVM_mmse = zeros(length(SNR_values_db),Nrealizations);
|
||
|
postEVM_mmse2 = zeros(length(SNR_values_db),Nrealizations);
|
||
|
postEVM_zf = zeros(length(SNR_values_db),Nrealizations);
|
||
|
postEVM_zf2 = zeros(length(SNR_values_db),Nrealizations);
|
||
|
|
||
|
|
||
|
enb.NDLRB = 6; % Number of resource blocks
|
||
|
enb.CellRefP = 1; % One transmit antenna port
|
||
|
enb.NCellID = 0; % Cell ID
|
||
|
enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix
|
||
|
enb.DuplexMode = 'FDD'; % FDD
|
||
|
|
||
|
%% Channel Model Configuration
|
||
|
rng(1); % Configure random number generators
|
||
|
|
||
|
cfg.Seed = 1; % Random channel seed
|
||
|
cfg.NRxAnts = 1; % 1 receive antenna
|
||
|
cfg.DelayProfile = 'EVA'; % EVA delay spread
|
||
|
cfg.DopplerFreq = 120; % 120Hz Doppler frequency
|
||
|
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
|
||
|
cfg.InitTime = 0; % Initialize at time zero
|
||
|
cfg.NTerms = 16; % Oscillators used in fading model
|
||
|
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
|
||
|
cfg.InitPhase = 'Random'; % Random initial phases
|
||
|
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
|
||
|
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
||
|
|
||
|
%% Channel Estimator Configuration
|
||
|
|
||
|
cec.FreqWindow = 9; % Frequency averaging window in
|
||
|
% Resource Elements (REs)
|
||
|
cec.TimeWindow = 9; % Time averaging window in REs
|
||
|
cec.InterpType = 'Cubic'; % Cubic interpolation
|
||
|
cec.PilotAverage = 'UserDefined'; % Pilot averaging method
|
||
|
cec.InterpWinSize = 3; % Interpolate up to 3 subframes
|
||
|
% simultaneously
|
||
|
cec.InterpWindow = 'Centred'; % Interpolation windowing method
|
||
|
|
||
|
cec2.FreqWindow = 9; % Frequency averaging window in
|
||
|
% Resource Elements (REs)
|
||
|
cec2.TimeWindow = 9; % Time averaging window in REs
|
||
|
cec2.InterpType = 'Linear'; % Cubic interpolation
|
||
|
cec2.PilotAverage = 'UserDefined'; % Pilot averaging method
|
||
|
cec2.InterpWinSize = 3; % Interpolate up to 3 subframes
|
||
|
% simultaneously
|
||
|
cec2.InterpWindow = 'Centered'; % Interpolation windowing method
|
||
|
|
||
|
%% Subframe Resource Grid Size
|
||
|
|
||
|
gridsize = lteDLResourceGridSize(enb);
|
||
|
K = gridsize(1); % Number of subcarriers
|
||
|
L = gridsize(2); % Number of OFDM symbols in one subframe
|
||
|
P = gridsize(3); % Number of transmit antenna ports
|
||
|
|
||
|
for nreal=1:Nrealizations
|
||
|
%% Transmit Resource Grid
|
||
|
txGrid = [];
|
||
|
|
||
|
%% Payload Data Generation
|
||
|
% Number of bits needed is size of resource grid (K*L*P) * number of bits
|
||
|
% per symbol (2 for QPSK)
|
||
|
numberOfBits = K*L*P*2;
|
||
|
|
||
|
% Create random bit stream
|
||
|
inputBits = randi([0 1], numberOfBits, 1);
|
||
|
|
||
|
% Modulate input bits
|
||
|
inputSym = lteSymbolModulate(inputBits,'QPSK');
|
||
|
|
||
|
%% Frame Generation
|
||
|
|
||
|
% For all subframes within the frame
|
||
|
for sf = 0:10
|
||
|
|
||
|
% Set subframe number
|
||
|
enb.NSubframe = mod(sf,10);
|
||
|
|
||
|
% Generate empty subframe
|
||
|
subframe = lteDLResourceGrid(enb);
|
||
|
|
||
|
% Map input symbols to grid
|
||
|
subframe(:) = inputSym;
|
||
|
|
||
|
% Generate synchronizing signals
|
||
|
pssSym = ltePSS(enb);
|
||
|
sssSym = lteSSS(enb);
|
||
|
pssInd = ltePSSIndices(enb);
|
||
|
sssInd = lteSSSIndices(enb);
|
||
|
|
||
|
% Map synchronizing signals to the grid
|
||
|
subframe(pssInd) = pssSym;
|
||
|
subframe(sssInd) = sssSym;
|
||
|
|
||
|
% Generate cell specific reference signal symbols and indices
|
||
|
cellRsSym = lteCellRS(enb);
|
||
|
cellRsInd = lteCellRSIndices(enb);
|
||
|
|
||
|
% Map cell specific reference signal to grid
|
||
|
subframe(cellRsInd) = cellRsSym;
|
||
|
|
||
|
% Append subframe to grid to be transmitted
|
||
|
txGrid = [txGrid subframe]; %#ok
|
||
|
|
||
|
end
|
||
|
|
||
|
%% OFDM Modulation
|
||
|
|
||
|
[txWaveform,info] = lteOFDMModulate(enb,txGrid);
|
||
|
txGrid = txGrid(:,1:140);
|
||
|
|
||
|
%% SNR Configuration
|
||
|
|
||
|
for snr_idx=1:length(SNR_values_db)
|
||
|
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
||
|
SNR = 10^(SNRdB/20); % Linear SNR
|
||
|
|
||
|
|
||
|
%% Fading Channel
|
||
|
|
||
|
cfg.SamplingRate = info.SamplingRate;
|
||
|
|
||
|
% Pass data through the fading channel model
|
||
|
rxWaveform = lteFadingChannel(cfg,txWaveform);
|
||
|
|
||
|
%% Additive Noise
|
||
|
|
||
|
% Calculate noise gain
|
||
|
N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR);
|
||
|
|
||
|
% Create additive white Gaussian noise
|
||
|
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
|
||
|
|
||
|
% Add noise to the received time domain waveform
|
||
|
%rxWaveform = rxWaveform + noise;
|
||
|
|
||
|
%% Synchronization
|
||
|
|
||
|
offset = lteDLFrameOffset(enb,rxWaveform);
|
||
|
rxWaveform = rxWaveform(1+offset:end,:);
|
||
|
|
||
|
%% OFDM Demodulation
|
||
|
rxGrid = lteOFDMDemodulate(enb,rxWaveform);
|
||
|
%rxGrid = txGrid;
|
||
|
|
||
|
addpath('../../debug/lte/phy/lib/ch_estimation/test')
|
||
|
%% Channel Estimation
|
||
|
[estChannel, noiseEst, avg_ref1, noavg_ref1] = lteDLChannelEstimate2(enb,cec2,rxGrid);
|
||
|
[dumm, refs] = liblte_chest(enb.NCellID,enb.CellRefP,rxGrid);
|
||
|
%estChannel2=reshape(estChannel2,72,[]);
|
||
|
[estChannel2] = lteDLChannelEstimate3(enb,cec2,rxGrid,refs);
|
||
|
|
||
|
%error(snr_idx,nreal) = mean(mean(abs(avg_ref-transpose(refs)),2));
|
||
|
|
||
|
%% MMSE Equalization
|
||
|
eqGrid_mmse = lteEqualizeMMSE(rxGrid, estChannel, noiseEst);
|
||
|
eqGrid_mmse2 = lteEqualizeMMSE(rxGrid, estChannel2, noiseEst);
|
||
|
|
||
|
eqGrid_zf = lteEqualizeZF(rxGrid, estChannel);
|
||
|
eqGrid_zf2 = lteEqualizeZF(rxGrid, estChannel2);
|
||
|
|
||
|
%% Analysis
|
||
|
|
||
|
% Compute EVM across all input values
|
||
|
% EVM of pre-equalized receive signal
|
||
|
preEqualisedEVM = lteEVM(txGrid,rxGrid);
|
||
|
fprintf('%d-%d: Pre-EQ: %0.3f%%\n', ...
|
||
|
snr_idx,nreal,preEqualisedEVM.RMS*100);
|
||
|
|
||
|
%EVM of post-equalized receive signal
|
||
|
postEqualisedEVM_mmse = lteEVM(txGrid,eqGrid_mmse);
|
||
|
fprintf('%d-%d: MMSE: %0.3f%%\n', ...
|
||
|
snr_idx,nreal,postEqualisedEVM_mmse.RMS*100);
|
||
|
postEqualisedEVM_mmse2 = lteEVM(txGrid,eqGrid_mmse2);
|
||
|
fprintf('%d-%d: MMSE-lin: %0.3f%%\n', ...
|
||
|
snr_idx,nreal,postEqualisedEVM_mmse2.RMS*100);
|
||
|
|
||
|
|
||
|
postEqualisedEVM_zf = lteEVM(txGrid,eqGrid_zf);
|
||
|
fprintf('%d-%d: zf: %0.3f%%\n', ...
|
||
|
snr_idx,nreal,postEqualisedEVM_zf.RMS*100);
|
||
|
postEqualisedEVM_zf2 = lteEVM(txGrid,eqGrid_zf2);
|
||
|
fprintf('%d-%d: zf-linear: %0.3f%%\n', ...
|
||
|
snr_idx,nreal,postEqualisedEVM_zf2.RMS*100);
|
||
|
|
||
|
preEVM(snr_idx,nreal) =preEqualisedEVM.RMS;
|
||
|
postEVM_mmse(snr_idx,nreal) = postEqualisedEVM_mmse.RMS;
|
||
|
postEVM_mmse2(snr_idx,nreal) = postEqualisedEVM_mmse2.RMS;
|
||
|
postEVM_zf(snr_idx,nreal) = postEqualisedEVM_zf.RMS;
|
||
|
postEVM_zf2(snr_idx,nreal) = postEqualisedEVM_zf2.RMS;
|
||
|
|
||
|
end
|
||
|
end
|
||
|
|
||
|
|
||
|
plot(SNR_values_db, mean(preEVM,2), ...
|
||
|
SNR_values_db, mean(postEVM_mmse,2), ...
|
||
|
SNR_values_db, mean(postEVM_mmse2,2), ...
|
||
|
SNR_values_db, mean(postEVM_zf,2), ...
|
||
|
SNR_values_db, mean(postEVM_zf2,2))
|
||
|
legend('No Eq','MMSE','MMSE-linear','ZF','ZF-linear')
|
||
|
%plot(SNR_values_db, mean(error,2))
|
||
|
grid on
|
||
|
|