You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/upper/rlc_stress_test.cc

420 lines
12 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <iostream>
#include <stdlib.h>
#include <pthread.h>
#include "srslte/common/log_filter.h"
#include "srslte/common/logger_stdout.h"
#include "srslte/common/threads.h"
#include "srslte/common/rlc_pcap.h"
#include "srslte/upper/rlc.h"
#include <boost/program_options.hpp>
#include <boost/program_options/parsers.hpp>
#include <assert.h>
#include <srslte/upper/rlc_interface.h>
#define SDU_SIZE 1500
using namespace std;
using namespace srsue;
using namespace srslte;
namespace bpo = boost::program_options;
typedef struct {
std::string mode;
uint32_t test_duration_sec;
float error_rate;
uint32_t sdu_gen_delay_usec;
uint32_t pdu_tx_delay_usec;
bool reestablish;
uint32_t log_level;
bool single_tx;
bool write_pcap;
float opp_sdu_ratio;
} stress_test_args_t;
void parse_args(stress_test_args_t *args, int argc, char *argv[]) {
// Command line only options
bpo::options_description general("General options");
general.add_options()
("help,h", "Produce help message")
("version,v", "Print version information and exit");
// Command line or config file options
bpo::options_description common("Configuration options");
common.add_options()
("mode", bpo::value<std::string>(&args->mode)->default_value("AM"), "Whether to test RLC acknowledged or unacknowledged mode (AM/UM)")
("duration", bpo::value<uint32_t>(&args->test_duration_sec)->default_value(5), "Duration (sec)")
("sdu_gen_delay", bpo::value<uint32_t>(&args->sdu_gen_delay_usec)->default_value(0), "SDU generation delay (usec)")
("pdu_tx_delay", bpo::value<uint32_t>(&args->pdu_tx_delay_usec)->default_value(0), "Delay in MAC for transfering PDU from tx'ing RLC to rx'ing RLC (usec)")
("error_rate", bpo::value<float>(&args->error_rate)->default_value(0.1), "Rate at which RLC PDUs are dropped")
("opp_sdu_ratio", bpo::value<float>(&args->opp_sdu_ratio)->default_value(0.0), "Ratio between MAC opportunity and SDU size (0==random)")
("reestablish", bpo::value<bool>(&args->reestablish)->default_value(false), "Mimic RLC reestablish during execution")
("loglevel", bpo::value<uint32_t>(&args->log_level)->default_value(srslte::LOG_LEVEL_DEBUG), "Log level (1=Error,2=Warning,3=Info,4=Debug)")
("singletx", bpo::value<bool>(&args->single_tx)->default_value(false), "If set to true, only one node is generating data")
("pcap", bpo::value<bool>(&args->write_pcap)->default_value(false), "Whether to write all RLC PDU to PCAP file");
// these options are allowed on the command line
bpo::options_description cmdline_options;
cmdline_options.add(common).add(general);
// parse the command line and store result in vm
bpo::variables_map vm;
bpo::store(bpo::command_line_parser(argc, argv).options(cmdline_options).run(), vm);
bpo::notify(vm);
// help option was given - print usage and exit
if (vm.count("help")) {
cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << endl << endl;
cout << common << endl << general << endl;
exit(0);
}
if (args->log_level > 4) {
args->log_level = 4;
printf("Set log level to %d (%s)\n", args->log_level, srslte::log_level_text[args->log_level]);
}
}
class mac_reader
:public thread
{
public:
mac_reader(rlc_interface_mac *rlc1_, rlc_interface_mac *rlc2_, float fail_rate_, float opp_sdu_ratio_, uint32_t pdu_tx_delay_usec_, rlc_pcap *pcap_, uint32_t lcid_, bool is_dl_ = true)
{
rlc1 = rlc1_;
rlc2 = rlc2_;
fail_rate = fail_rate_;
opp_sdu_ratio = opp_sdu_ratio_;
run_enable = true;
running = false;
pdu_tx_delay_usec = pdu_tx_delay_usec_;
pcap = pcap_;
is_dl = is_dl_;
lcid = lcid_;
}
void stop()
{
run_enable = false;
int cnt=0;
while(running && cnt<100) {
usleep(10000);
cnt++;
}
if(running) {
thread_cancel();
}
wait_thread_finish();
}
private:
void run_thread()
{
running = true;
byte_buffer_t *pdu = byte_buffer_pool::get_instance()->allocate("mac_reader::run_thread");
if (!pdu) {
printf("Fatal Error: Could not allocate PDU in mac_reader::run_thread\n");
exit(-1);
}
while(run_enable) {
// generate MAC opportunities of random size or with fixed ratio
float r = opp_sdu_ratio ? opp_sdu_ratio : (float)rand()/RAND_MAX;
int opp_size = r*SDU_SIZE;
uint32_t buf_state = rlc1->get_buffer_state(lcid);
if (buf_state) {
int read = rlc1->read_pdu(lcid, pdu->msg, opp_size);
if (pdu_tx_delay_usec) usleep(pdu_tx_delay_usec);
if(((float)rand()/RAND_MAX > fail_rate) && read>0) {
pdu->N_bytes = read;
rlc2->write_pdu(lcid, pdu->msg, pdu->N_bytes);
if (is_dl) {
pcap->write_dl_am_ccch(pdu->msg, pdu->N_bytes);
} else {
pcap->write_ul_am_ccch(pdu->msg, pdu->N_bytes);
}
}
}
}
running = false;
byte_buffer_pool::get_instance()->deallocate(pdu);
}
rlc_interface_mac *rlc1;
rlc_interface_mac *rlc2;
float fail_rate;
float opp_sdu_ratio;
uint32_t pdu_tx_delay_usec;
rlc_pcap *pcap;
uint32_t lcid;
bool is_dl;
bool run_enable;
bool running;
};
class mac_dummy
:public srslte::mac_interface_timers
{
public:
mac_dummy(rlc_interface_mac *rlc1_, rlc_interface_mac *rlc2_, float fail_rate_, float opp_sdu_ratio_, int32_t pdu_tx_delay, uint32_t lcid, rlc_pcap* pcap = NULL)
:r1(rlc1_, rlc2_, fail_rate_, opp_sdu_ratio_, pdu_tx_delay, pcap, lcid, true)
,r2(rlc2_, rlc1_, fail_rate_, opp_sdu_ratio_, pdu_tx_delay, pcap, lcid, false)
{
}
void start()
{
r1.start(7);
r2.start(7);
}
void stop()
{
r1.stop();
r2.stop();
}
srslte::timers::timer* timer_get(uint32_t timer_id)
{
return &t;
}
uint32_t timer_get_unique_id(){return 0;}
void timer_release_id(uint32_t id){}
private:
srslte::timers::timer t;
mac_reader r1;
mac_reader r2;
};
class rlc_tester
:public pdcp_interface_rlc
,public rrc_interface_rlc
,public thread
{
public:
rlc_tester(rlc_interface_pdcp *rlc_, std::string name_, uint32_t sdu_gen_delay_usec_, uint32_t lcid_){
rlc = rlc_;
run_enable = true;
running = false;
rx_pdus = 0;
name = name_;
sdu_gen_delay_usec = sdu_gen_delay_usec_;
lcid = lcid_;
}
void stop()
{
run_enable = false;
int cnt=0;
while(running && cnt<100) {
usleep(10000);
cnt++;
}
if(running) {
thread_cancel();
}
wait_thread_finish();
}
// PDCP interface
void write_pdu(uint32_t rx_lcid, byte_buffer_t *sdu)
{
assert(rx_lcid == lcid);
if (sdu->N_bytes != SDU_SIZE) {
printf("Received PDU with size %d, expected %d. Exiting.\n", sdu->N_bytes, SDU_SIZE);
exit(-1);
}
byte_buffer_pool::get_instance()->deallocate(sdu);
rx_pdus++;
}
void write_pdu_bcch_bch(byte_buffer_t *sdu) {}
void write_pdu_bcch_dlsch(byte_buffer_t *sdu) {}
void write_pdu_pcch(byte_buffer_t *sdu) {}
void write_pdu_mch(uint32_t lcid, srslte::byte_buffer_t *sdu) {}
// RRC interface
void max_retx_attempted(){}
std::string get_rb_name(uint32_t rx_lcid) { return std::string(""); }
int get_nof_rx_pdus() { return rx_pdus; }
private:
void run_thread()
{
uint8_t sn = 0;
running = true;
while(run_enable) {
byte_buffer_t *pdu = byte_buffer_pool::get_instance()->allocate("rlc_tester::run_thread");
if (!pdu) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
usleep(1000);
continue;
}
for (uint32_t i = 0; i < SDU_SIZE; i++) {
pdu->msg[i] = sn;
}
sn++;
pdu->N_bytes = SDU_SIZE;
rlc->write_sdu(lcid, pdu);
if (sdu_gen_delay_usec) usleep(sdu_gen_delay_usec);
}
running = false;
}
bool run_enable;
bool running;
long rx_pdus;
uint32_t lcid;
std::string name;
uint32_t sdu_gen_delay_usec;
rlc_interface_pdcp *rlc;
};
void stress_test(stress_test_args_t args)
{
srslte::log_filter log1("RLC_1");
srslte::log_filter log2("RLC_2");
log1.set_level((LOG_LEVEL_ENUM)args.log_level);
log2.set_level((LOG_LEVEL_ENUM)args.log_level);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_pcap pcap;
uint32_t lcid = 1;
if (args.write_pcap) {
pcap.open("rlc_stress_test.pcap", 0);
}
srslte_rlc_config_t cnfg_;
if (args.mode == "AM") {
// config RLC AM bearer
cnfg_.rlc_mode = SRSLTE_RLC_MODE_AM;
cnfg_.am.max_retx_thresh = 4;
cnfg_.am.poll_byte = 25*1000;
cnfg_.am.poll_pdu = 4;
cnfg_.am.t_poll_retx = 5;
cnfg_.am.t_reordering = 5;
cnfg_.am.t_status_prohibit = 5;
} else if (args.mode == "UM") {
// config UM bearer
cnfg_.rlc_mode = SRSLTE_RLC_MODE_UM;
cnfg_.um.t_reordering = 5;
cnfg_.um.rx_mod = 32;
cnfg_.um.rx_sn_field_length = RLC_UMD_SN_SIZE_5_BITS;
cnfg_.um.rx_window_size = 16;
cnfg_.um.tx_sn_field_length = RLC_UMD_SN_SIZE_5_BITS;
cnfg_.um.tx_mod = 32;
} else if (args.mode == "TM") {
// use default LCID in TM
lcid = 0;
} else {
cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl;
exit(-1);
}
rlc rlc1;
rlc rlc2;
rlc_tester tester1(&rlc1, "tester1", args.sdu_gen_delay_usec, lcid);
rlc_tester tester2(&rlc2, "tester2", args.sdu_gen_delay_usec, lcid);
mac_dummy mac(&rlc1, &rlc2, args.error_rate, args.opp_sdu_ratio, args.pdu_tx_delay_usec, lcid, &pcap);
ue_interface ue;
rlc1.init(&tester1, &tester1, &ue, &log1, &mac, 0);
rlc2.init(&tester2, &tester2, &ue, &log2, &mac, 0);
// only add AM and UM bearers
if (args.mode != "TM") {
rlc1.add_bearer(lcid, cnfg_);
rlc2.add_bearer(lcid, cnfg_);
}
tester1.start(7);
if (!args.single_tx) {
tester2.start(7);
}
mac.start();
for (uint32_t i = 0; i < args.test_duration_sec; i++) {
// if enabled, mimic reestablishment every second
if (args.reestablish) {
rlc1.reestablish();
rlc2.reestablish();
}
usleep(1e6);
}
tester1.stop();
tester2.stop();
mac.stop();
if (args.write_pcap) {
pcap.close();
}
rlc_metrics_t metrics;
rlc1.get_metrics(metrics);
printf("RLC1 received %d SDUs in %ds (%.2f PDU/s), Throughput: DL=%4.2f Mbps, UL=%4.2f Mbps\n",
tester1.get_nof_rx_pdus(),
args.test_duration_sec,
(float)tester1.get_nof_rx_pdus()/args.test_duration_sec,
metrics.dl_tput_mbps,
metrics.ul_tput_mbps);
rlc2.get_metrics(metrics);
printf("RLC2 received %d SDUs in %ds (%.2f PDU/s), Throughput: DL=%4.2f Mbps, UL=%4.2f Mbps\n",
tester2.get_nof_rx_pdus(),
args.test_duration_sec,
(float)tester2.get_nof_rx_pdus()/args.test_duration_sec,
metrics.dl_tput_mbps,
metrics.ul_tput_mbps);
}
int main(int argc, char **argv) {
stress_test_args_t args;
parse_args(&args, argc, argv);
stress_test(args);
byte_buffer_pool::get_instance()->cleanup();
exit(0);
}