|
|
|
/**
|
|
|
|
* Copyright 2013-2021 Software Radio Systems Limited
|
|
|
|
*
|
|
|
|
* This file is part of srsLTE.
|
|
|
|
*
|
|
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as
|
|
|
|
* published by the Free Software Foundation, either version 3 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
|
|
* and at http://www.gnu.org/licenses/.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "srslte/common/timers.h"
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
|
|
#include <srslte/common/tti_sync_cv.h>
|
|
|
|
#include <thread>
|
|
|
|
|
|
|
|
#define TESTASSERT(cond) \
|
|
|
|
do { \
|
|
|
|
if (!(cond)) { \
|
|
|
|
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
|
|
|
|
return -1; \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
using namespace srslte;
|
|
|
|
|
|
|
|
int timers_test1()
|
|
|
|
{
|
|
|
|
timer_handler timers;
|
|
|
|
uint32_t dur = 5;
|
|
|
|
|
|
|
|
{
|
|
|
|
timer_handler::unique_timer t = timers.get_unique_timer();
|
|
|
|
TESTASSERT(not t.is_running() and not t.is_expired());
|
|
|
|
TESTASSERT(t.id() == 0);
|
|
|
|
timer_handler::unique_timer t2 = timers.get_unique_timer();
|
|
|
|
TESTASSERT(not t2.is_running() and not t2.is_expired());
|
|
|
|
TESTASSERT(t2.id() == 1);
|
|
|
|
TESTASSERT(timers.nof_timers() == 2);
|
|
|
|
|
|
|
|
// TEST: Run multiple times with the same duration
|
|
|
|
bool callback_called = false;
|
|
|
|
t.set(dur, [&callback_called](int) { callback_called = true; });
|
|
|
|
TESTASSERT(timers.get_cur_time() == 0);
|
|
|
|
for (uint32_t runs = 0; runs < 3; ++runs) {
|
|
|
|
callback_called = false;
|
|
|
|
TESTASSERT(not t.is_running());
|
|
|
|
t.run();
|
|
|
|
TESTASSERT(t.is_running() and not t.is_expired());
|
|
|
|
for (uint32_t i = 0; i < dur - 1; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.is_running() and not t.is_expired());
|
|
|
|
}
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(not t.is_running() and t.is_expired());
|
|
|
|
TESTASSERT(callback_called);
|
|
|
|
}
|
|
|
|
TESTASSERT(timers.get_cur_time() == 3 * dur);
|
|
|
|
|
|
|
|
// TEST: interrupt a timer. check if callback was called
|
|
|
|
callback_called = false;
|
|
|
|
t.run();
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.is_running());
|
|
|
|
t.stop();
|
|
|
|
TESTASSERT(not t.is_running());
|
|
|
|
for (uint32_t i = 0; i < dur; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(not t.is_running());
|
|
|
|
}
|
|
|
|
TESTASSERT(not callback_called);
|
|
|
|
|
|
|
|
// TEST: call timer::run() when it is already running. Check if duration gets extended.
|
|
|
|
callback_called = false;
|
|
|
|
t.run();
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.is_running());
|
|
|
|
t.run(); // re-run
|
|
|
|
for (uint32_t i = 0; i < dur - 1; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.is_running());
|
|
|
|
}
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(not t.is_running());
|
|
|
|
TESTASSERT(callback_called);
|
|
|
|
|
|
|
|
// TEST: ordering of timers is respected
|
|
|
|
timer_handler::unique_timer t3 = timers.get_unique_timer();
|
|
|
|
TESTASSERT(t3.id() == 2);
|
|
|
|
int first_id = -1, last_id = -1;
|
|
|
|
auto callback = [&first_id, &last_id](int id) {
|
|
|
|
if (first_id < 0) {
|
|
|
|
printf("First timer id=%d\n", id);
|
|
|
|
first_id = id;
|
|
|
|
}
|
|
|
|
last_id = id;
|
|
|
|
};
|
|
|
|
t.set(4, callback);
|
|
|
|
t2.set(2, callback);
|
|
|
|
t3.set(6, callback);
|
|
|
|
t.run();
|
|
|
|
t2.run();
|
|
|
|
t3.run();
|
|
|
|
for (uint32_t i = 0; i < 5; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(i >= 3 or t.is_running());
|
|
|
|
TESTASSERT(i >= 1 or t2.is_running());
|
|
|
|
TESTASSERT(t3.is_running());
|
|
|
|
}
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.is_expired() and t2.is_expired() and t3.is_expired());
|
|
|
|
TESTASSERT(first_id == 1);
|
|
|
|
printf("Last timer id=%d\n", last_id);
|
|
|
|
TESTASSERT(last_id == 2);
|
|
|
|
}
|
|
|
|
// TEST: timer dtor is called and removes "timer" from "timers"
|
|
|
|
TESTASSERT(timers.nof_timers() == 0);
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int timers_test2()
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* Description:
|
|
|
|
* - calling stop() early, forbids the timer from getting expired
|
|
|
|
* - calling stop() after timer has expired should be a noop
|
|
|
|
*/
|
|
|
|
timer_handler timers;
|
|
|
|
uint32_t duration = 2;
|
|
|
|
|
|
|
|
auto utimer = timers.get_unique_timer();
|
|
|
|
auto utimer2 = timers.get_unique_timer();
|
|
|
|
utimer.set(duration);
|
|
|
|
utimer2.set(duration);
|
|
|
|
|
|
|
|
// TEST 1: call utimer.stop() early and check if timer expires
|
|
|
|
utimer.run();
|
|
|
|
utimer2.run();
|
|
|
|
TESTASSERT(utimer.is_running() and not utimer.is_expired());
|
|
|
|
utimer.stop();
|
|
|
|
TESTASSERT(not utimer.is_running() and not utimer.is_expired());
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < 5; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
TESTASSERT(not utimer.is_expired());
|
|
|
|
TESTASSERT(utimer2.is_expired());
|
|
|
|
|
|
|
|
// TEST 2: call utimer.stop() after it expires and assert it is still expired
|
|
|
|
utimer2.stop();
|
|
|
|
TESTASSERT(utimer2.is_expired());
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int timers_test3()
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* Description:
|
|
|
|
* - setting a new duration while the timer is already running should not stop timer, and should extend timeout
|
|
|
|
*/
|
|
|
|
timer_handler timers;
|
|
|
|
uint32_t duration = 5;
|
|
|
|
|
|
|
|
auto utimer = timers.get_unique_timer();
|
|
|
|
utimer.set(duration);
|
|
|
|
utimer.run();
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < 2 * duration + 1; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
if ((i % 2) == 0) {
|
|
|
|
// extends lifetime
|
|
|
|
utimer.set(duration);
|
|
|
|
}
|
|
|
|
TESTASSERT(utimer.is_running());
|
|
|
|
}
|
|
|
|
for (uint32_t i = 0; i < duration - 1; ++i) {
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(utimer.is_running());
|
|
|
|
}
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(not utimer.is_running());
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct timers_test4_ctxt {
|
|
|
|
std::vector<timer_handler::unique_timer> timers;
|
|
|
|
srslte::tti_sync_cv tti_sync1;
|
|
|
|
srslte::tti_sync_cv tti_sync2;
|
|
|
|
const uint32_t duration = 1000;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void timers2_test4_thread(timers_test4_ctxt* ctx)
|
|
|
|
{
|
|
|
|
std::mt19937 mt19937(4);
|
|
|
|
std::uniform_real_distribution<float> real_dist(0.0f, 1.0f);
|
|
|
|
for (uint32_t d = 0; d < ctx->duration; d++) {
|
|
|
|
// make random events
|
|
|
|
for (uint32_t i = 1; i < ctx->timers.size(); i++) {
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].run();
|
|
|
|
}
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].stop();
|
|
|
|
}
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].set(static_cast<uint32_t>(ctx->duration * real_dist(mt19937)));
|
|
|
|
ctx->timers[i].run();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Send finished to main thread
|
|
|
|
ctx->tti_sync1.increase();
|
|
|
|
|
|
|
|
// Wait to main thread to check results
|
|
|
|
ctx->tti_sync2.wait();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int timers_test4()
|
|
|
|
{
|
|
|
|
timers_test4_ctxt* ctx = new timers_test4_ctxt;
|
|
|
|
timer_handler timers;
|
|
|
|
uint32_t nof_timers = 32;
|
|
|
|
std::mt19937 mt19937(4);
|
|
|
|
std::uniform_real_distribution<float> real_dist(0.0f, 1.0f);
|
|
|
|
|
|
|
|
// Generate all timers and start them
|
|
|
|
for (uint32_t i = 0; i < nof_timers; i++) {
|
|
|
|
ctx->timers.push_back(timers.get_unique_timer());
|
|
|
|
ctx->timers[i].set(ctx->duration);
|
|
|
|
ctx->timers[i].run();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create side thread
|
|
|
|
std::thread thread(timers2_test4_thread, ctx);
|
|
|
|
|
|
|
|
for (uint32_t d = 0; d < ctx->duration; d++) {
|
|
|
|
// make random events
|
|
|
|
for (uint32_t i = 1; i < nof_timers; i++) {
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].run();
|
|
|
|
}
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].stop();
|
|
|
|
}
|
|
|
|
if (0.1f > real_dist(mt19937)) {
|
|
|
|
ctx->timers[i].set(static_cast<uint32_t>(ctx->duration * real_dist(mt19937)));
|
|
|
|
ctx->timers[i].run();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// first times, does not have event, it shall keep running
|
|
|
|
TESTASSERT(ctx->timers[0].is_running());
|
|
|
|
|
|
|
|
// Increment time
|
|
|
|
timers.step_all();
|
|
|
|
|
|
|
|
// wait second thread to finish events
|
|
|
|
ctx->tti_sync1.wait();
|
|
|
|
|
|
|
|
// assert no timer got wrong values
|
|
|
|
for (uint32_t i = 0; i < nof_timers; i++) {
|
|
|
|
if (ctx->timers[i].is_running()) {
|
|
|
|
TESTASSERT(ctx->timers[i].time_elapsed() <= ctx->timers[i].duration());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Start new TTI
|
|
|
|
ctx->tti_sync2.increase();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finish asynchronous thread
|
|
|
|
thread.join();
|
|
|
|
|
|
|
|
// First timer should have expired
|
|
|
|
TESTASSERT(ctx->timers[0].is_expired());
|
|
|
|
TESTASSERT(not ctx->timers[0].is_running());
|
|
|
|
|
|
|
|
// Run for the maximum period
|
|
|
|
for (uint32_t d = 0; d < ctx->duration; d++) {
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
|
|
|
|
// No timer should be running
|
|
|
|
for (uint32_t i = 0; i < nof_timers; i++) {
|
|
|
|
TESTASSERT(not ctx->timers[i].is_running());
|
|
|
|
}
|
|
|
|
|
|
|
|
delete ctx;
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Description: Delaying a callback using the timer_handler
|
|
|
|
*/
|
|
|
|
int timers_test5()
|
|
|
|
{
|
|
|
|
timer_handler timers;
|
|
|
|
TESTASSERT(timers.nof_timers() == 0);
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 0);
|
|
|
|
|
|
|
|
std::vector<int> vals;
|
|
|
|
|
|
|
|
// TTI 0: Add a unique_timer of duration=5
|
|
|
|
timer_handler::unique_timer t = timers.get_unique_timer();
|
|
|
|
TESTASSERT(timers.nof_timers() == 1);
|
|
|
|
t.set(5, [&vals](uint32_t tid) { vals.push_back(1); });
|
|
|
|
t.run();
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 1);
|
|
|
|
timers.step_all();
|
|
|
|
|
|
|
|
// TTI 1: Add two delayed callbacks, with duration=2 and 6
|
|
|
|
{
|
|
|
|
// ensure captures by value are ok
|
|
|
|
std::string string = "test string";
|
|
|
|
timers.defer_callback(2, [&vals, string]() {
|
|
|
|
vals.push_back(2);
|
|
|
|
if (string != "test string") {
|
|
|
|
ERROR("string was not captured correctly");
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
timers.defer_callback(6, [&vals]() { vals.push_back(3); });
|
|
|
|
TESTASSERT(timers.nof_timers() == 3);
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 3);
|
|
|
|
timers.step_all();
|
|
|
|
timers.step_all();
|
|
|
|
|
|
|
|
// TTI 3: First callback should have been triggered by now
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 2);
|
|
|
|
TESTASSERT(timers.nof_timers() == 2);
|
|
|
|
TESTASSERT(vals.size() == 1);
|
|
|
|
TESTASSERT(vals[0] == 2);
|
|
|
|
timers.step_all();
|
|
|
|
timers.step_all();
|
|
|
|
|
|
|
|
// TTI 5: Unique timer should have been triggered by now
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 1);
|
|
|
|
TESTASSERT(timers.nof_timers() == 2);
|
|
|
|
TESTASSERT(vals.size() == 2);
|
|
|
|
TESTASSERT(vals[1] == 1);
|
|
|
|
timers.step_all();
|
|
|
|
timers.step_all();
|
|
|
|
|
|
|
|
// TTI 7: Second callback should have been triggered by now
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 0);
|
|
|
|
TESTASSERT(timers.nof_timers() == 1);
|
|
|
|
TESTASSERT(vals.size() == 3);
|
|
|
|
TESTASSERT(vals[2] == 3);
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Description: Check if erasure of a running timer is safe
|
|
|
|
*/
|
|
|
|
int timers_test6()
|
|
|
|
{
|
|
|
|
timer_handler timers;
|
|
|
|
|
|
|
|
std::vector<int> vals;
|
|
|
|
|
|
|
|
// Event: Add a timer that gets erased 1 tti after.
|
|
|
|
{
|
|
|
|
timer_handler::unique_timer t = timers.get_unique_timer();
|
|
|
|
t.set(2, [&vals](uint32_t tid) { vals.push_back(1); });
|
|
|
|
t.run();
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 1);
|
|
|
|
timers.step_all();
|
|
|
|
}
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 0);
|
|
|
|
TESTASSERT(timers.nof_timers() == 0);
|
|
|
|
|
|
|
|
// TEST: The timer callback should not have been called
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(vals.empty());
|
|
|
|
|
|
|
|
// Event: Add a timer that gets erased right after, and add another timer with same timeout
|
|
|
|
{
|
|
|
|
timer_handler::unique_timer t = timers.get_unique_timer();
|
|
|
|
t.set(2, [&vals](uint32_t tid) { vals.push_back(2); });
|
|
|
|
t.run();
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 1);
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(t.time_elapsed() == 1);
|
|
|
|
}
|
|
|
|
timer_handler::unique_timer t = timers.get_unique_timer();
|
|
|
|
t.set(1, [&vals](uint32_t tid) { vals.push_back(3); });
|
|
|
|
t.run();
|
|
|
|
TESTASSERT(timers.nof_running_timers() == 1);
|
|
|
|
|
|
|
|
// TEST: The second timer's callback should be the one being called, and should be called only once
|
|
|
|
timers.step_all();
|
|
|
|
TESTASSERT(vals.size() == 1 and vals[0] == 3);
|
|
|
|
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
TESTASSERT(timers_test1() == SRSLTE_SUCCESS);
|
|
|
|
TESTASSERT(timers_test2() == SRSLTE_SUCCESS);
|
|
|
|
TESTASSERT(timers_test3() == SRSLTE_SUCCESS);
|
|
|
|
TESTASSERT(timers_test4() == SRSLTE_SUCCESS);
|
|
|
|
TESTASSERT(timers_test5() == SRSLTE_SUCCESS);
|
|
|
|
TESTASSERT(timers_test6() == SRSLTE_SUCCESS);
|
|
|
|
printf("Success\n");
|
|
|
|
return 0;
|
|
|
|
}
|