You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

292 lines
10 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <pthread.h>
#include <sstream>
#include <string.h>
#include <string>
#include <strings.h>
#include <sys/mman.h>
#include <unistd.h>
#include "srsenb/hdr/phy/phy.h"
#include "srslte/common/log.h"
#include "srslte/common/threads.h"
#define Error(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->error(fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->warning(fmt, ##__VA_ARGS__)
#define Info(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->info(fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->debug(fmt, ##__VA_ARGS__)
using namespace std;
using namespace asn1::rrc;
namespace srsenb {
phy::phy(srslte::logger* logger_) :
logger(logger_), workers_pool(MAX_WORKERS), workers(MAX_WORKERS), workers_common(), nof_workers(0)
{
}
phy::~phy()
{
stop();
}
void phy::parse_common_config(const phy_cfg_t& cfg)
{
// PRACH configuration
prach_cfg.config_idx = cfg.prach_cnfg.prach_cfg_info.prach_cfg_idx;
prach_cfg.hs_flag = cfg.prach_cnfg.prach_cfg_info.high_speed_flag;
prach_cfg.root_seq_idx = cfg.prach_cnfg.root_seq_idx;
prach_cfg.zero_corr_zone = cfg.prach_cnfg.prach_cfg_info.zero_correlation_zone_cfg;
prach_cfg.freq_offset = cfg.prach_cnfg.prach_cfg_info.prach_freq_offset;
prach_cfg.num_ra_preambles = cfg.phy_cell_cfg.at(0).num_ra_preambles;
// DMRS
workers_common.dmrs_pusch_cfg.cyclic_shift = cfg.pusch_cnfg.ul_ref_sigs_pusch.cyclic_shift;
workers_common.dmrs_pusch_cfg.delta_ss = cfg.pusch_cnfg.ul_ref_sigs_pusch.group_assign_pusch;
workers_common.dmrs_pusch_cfg.group_hopping_en = cfg.pusch_cnfg.ul_ref_sigs_pusch.group_hop_enabled;
workers_common.dmrs_pusch_cfg.sequence_hopping_en = cfg.pusch_cnfg.ul_ref_sigs_pusch.seq_hop_enabled;
}
int phy::init(const phy_args_t& args,
const phy_cfg_t& cfg,
srslte::radio_interface_phy* radio_,
stack_interface_phy_lte* stack_)
{
mlockall((uint32_t)MCL_CURRENT | (uint32_t)MCL_FUTURE);
// Create array of pointers to phy_logs
for (int i = 0; i < args.nof_phy_threads; i++) {
auto mylog = std::unique_ptr<srslte::log_filter>(new srslte::log_filter);
char tmp[16] = {};
sprintf(tmp, "PHY%d", i);
mylog->init(tmp, logger, true);
mylog->set_level(args.log.phy_level);
mylog->set_hex_limit(args.log.phy_hex_limit);
log_vec.push_back(std::move(mylog));
}
log_h = log_vec[0].get();
// Add PHY lib log
if (log_vec.at(0)->get_level_from_string(args.log.phy_lib_level) != srslte::LOG_LEVEL_NONE) {
auto lib_log = std::unique_ptr<srslte::log_filter>(new srslte::log_filter);
char tmp[16] = {};
sprintf(tmp, "PHY_LIB");
lib_log->init(tmp, logger, true);
lib_log->set_level(args.log.phy_lib_level);
lib_log->set_hex_limit(args.log.phy_hex_limit);
log_vec.push_back(std::move(lib_log));
} else {
log_vec.push_back(nullptr);
}
radio = radio_;
nof_workers = args.nof_phy_threads;
workers_common.params = args;
workers_common.init(cfg.phy_cell_cfg, radio, stack_);
parse_common_config(cfg);
// Add workers to workers pool and start threads
for (uint32_t i = 0; i < nof_workers; i++) {
workers[i].init(&workers_common, log_vec.at(i).get());
workers_pool.init_worker(i, &workers[i], WORKERS_THREAD_PRIO);
}
// For each carrier, initialise PRACH worker
for (uint32_t cc = 0; cc < cfg.phy_cell_cfg.size(); cc++) {
prach_cfg.root_seq_idx = cfg.phy_cell_cfg[cc].root_seq_idx;
prach.init(cc, cfg.phy_cell_cfg[cc].cell, prach_cfg, stack_, log_vec.at(0).get(), PRACH_WORKER_THREAD_PRIO);
}
prach.set_max_prach_offset_us(args.max_prach_offset_us);
// Warning this must be initialized after all workers have been added to the pool
tx_rx.init(radio, &workers_pool, &workers_common, &prach, log_vec.at(0).get(), SF_RECV_THREAD_PRIO);
initialized = true;
return SRSLTE_SUCCESS;
}
void phy::stop()
{
if (initialized) {
tx_rx.stop();
workers_common.stop();
workers_pool.stop();
prach.stop();
initialized = false;
}
}
/***** MAC->PHY interface **********/
int phy::add_rnti(uint16_t rnti, uint32_t pcell_index, bool is_temporal)
{
if (SRSLTE_RNTI_ISUSER(rnti)) {
// Create default PHY configuration with the desired PCell index
phy_interface_rrc_lte::phy_rrc_dedicated_list_t phy_rrc_dedicated_list(1);
phy_rrc_dedicated_list[0].enb_cc_idx = pcell_index;
workers_common.ue_db.addmod_rnti(rnti, phy_rrc_dedicated_list);
}
for (uint32_t i = 0; i < nof_workers; i++) {
if (workers[i].add_rnti(rnti, pcell_index, true, is_temporal)) {
return SRSLTE_ERROR;
}
}
return SRSLTE_SUCCESS;
}
void phy::rem_rnti(uint16_t rnti)
{
// Remove the RNTI when the TTI finishes, this has a delay up to the pipeline length (3 ms)
for (uint32_t i = 0; i < nof_workers; i++) {
sf_worker* w = (sf_worker*)workers_pool.wait_worker_id(i);
w->rem_rnti(rnti);
w->release();
}
if (SRSLTE_RNTI_ISUSER(rnti)) {
workers_common.ue_db.rem_rnti(rnti);
workers_common.clear_grants(rnti);
}
}
void phy::set_mch_period_stop(uint32_t stop)
{
workers_common.set_mch_period_stop(stop);
}
void phy::set_activation_deactivation_scell(uint16_t rnti, const std::array<bool, SRSLTE_MAX_CARRIERS>& activation)
{
// Iterate all elements except 0 that is reserved for primary cell
for (uint32_t scell_idx = 1; scell_idx < SRSLTE_MAX_CARRIERS; scell_idx++) {
workers_common.ue_db.activate_deactivate_scell(rnti, scell_idx, activation[scell_idx]);
}
}
void phy::get_metrics(phy_metrics_t metrics[ENB_METRICS_MAX_USERS])
{
phy_metrics_t metrics_tmp[ENB_METRICS_MAX_USERS] = {};
uint32_t nof_users = workers[0].get_nof_rnti();
bzero(metrics, sizeof(phy_metrics_t) * ENB_METRICS_MAX_USERS);
for (uint32_t i = 0; i < nof_workers; i++) {
workers[i].get_metrics(metrics_tmp);
for (uint32_t j = 0; j < nof_users; j++) {
metrics[j].dl.n_samples += metrics_tmp[j].dl.n_samples;
metrics[j].dl.mcs += metrics_tmp[j].dl.n_samples * metrics_tmp[j].dl.mcs;
metrics[j].ul.n_samples += metrics_tmp[j].ul.n_samples;
metrics[j].ul.mcs += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.mcs;
metrics[j].ul.n += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.n;
metrics[j].ul.rssi += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.rssi;
metrics[j].ul.sinr += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.sinr;
metrics[j].ul.turbo_iters += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.turbo_iters;
}
}
for (uint32_t j = 0; j < nof_users; j++) {
metrics[j].dl.mcs /= metrics[j].dl.n_samples;
metrics[j].ul.mcs /= metrics[j].ul.n_samples;
metrics[j].ul.n /= metrics[j].ul.n_samples;
metrics[j].ul.rssi /= metrics[j].ul.n_samples;
metrics[j].ul.sinr /= metrics[j].ul.n_samples;
metrics[j].ul.turbo_iters /= metrics[j].ul.n_samples;
}
}
/***** RRC->PHY interface **********/
void phy::set_config_dedicated(uint16_t rnti, const phy_rrc_dedicated_list_t& dedicated_list)
{
// Update UE Database
workers_common.ue_db.addmod_rnti(rnti, dedicated_list);
// Iterate over the list and add the RNTIs
for (uint32_t scell_idx = 0; scell_idx < dedicated_list.size(); scell_idx++) {
auto& config = dedicated_list[scell_idx];
// Configure only if active, ignore otherwise
if (scell_idx != 0 && config.configured) {
// Add RNTI to workers
for (uint32_t w = 0; w < nof_workers; w++) {
workers[w].add_rnti(rnti, config.enb_cc_idx, false, false);
}
}
}
}
void phy::complete_config_dedicated(uint16_t rnti)
{
// Forwards call to the UE Database
workers_common.ue_db.complete_config(rnti);
}
void phy::configure_mbsfn(sib_type2_s* sib2, sib_type13_r9_s* sib13, const mcch_msg_s& mcch)
{
if (sib2->mbsfn_sf_cfg_list_present) {
if (sib2->mbsfn_sf_cfg_list.size() == 0) {
Warning("SIB2 does not have any MBSFN config although it was set as present\n");
} else {
if (sib2->mbsfn_sf_cfg_list.size() > 1) {
Warning("SIB2 has %d MBSFN subframe configs - only 1 supported\n", sib2->mbsfn_sf_cfg_list.size());
}
phy_rrc_config.mbsfn.mbsfn_subfr_cnfg = sib2->mbsfn_sf_cfg_list[0];
}
} else {
fprintf(stderr, "SIB2 has no MBSFN subframe config specified\n");
return;
}
phy_rrc_config.mbsfn.mbsfn_notification_cnfg = sib13->notif_cfg_r9;
if (sib13->mbsfn_area_info_list_r9.size() > 0) {
if (sib13->mbsfn_area_info_list_r9.size() > 1) {
Warning("SIB13 has %d MBSFN area info elements - only 1 supported\n", sib13->mbsfn_area_info_list_r9.size());
}
phy_rrc_config.mbsfn.mbsfn_area_info = sib13->mbsfn_area_info_list_r9[0];
}
phy_rrc_config.mbsfn.mcch = mcch;
workers_common.configure_mbsfn(&phy_rrc_config.mbsfn);
}
// Start GUI
void phy::start_plot()
{
workers[0].start_plot();
}
} // namespace srsenb