You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsue/src/phy/async_scell_recv.cc

584 lines
16 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsue/hdr/phy/async_scell_recv.h"
#include "srsue/hdr/phy/phy_common.h"
#include <srslte/interfaces/ue_interfaces.h>
#include <srslte/phy/ch_estimation/chest_dl.h>
#include <srslte/phy/common/phy_common.h>
#include <srslte/phy/ue/ue_sync.h>
#include <srslte/srslte.h>
#define LOG_PREABLE "[scell_recv] "
#define LOG_ALL_CONSOLE 0
#if LOG_ALL_CONSOLE
#define Error(fmt, ...) log_h->console(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) log_h->console(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Info(fmt, ...) log_h->console(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) log_h->console(LOG_PREABLE fmt, ##__VA_ARGS__)
#else
#define Error(fmt, ...) log_h->error(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) log_h->warning(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Info(fmt, ...) log_h->info(LOG_PREABLE fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) log_h->debug(LOG_PREABLE fmt, ##__VA_ARGS__)
#endif
namespace srsue {
async_scell_recv::async_scell_recv()
{
initiated = false;
buffer_write_idx = 0;
buffer_read_idx = 0;
dl_freq = -1;
ul_freq = -1;
bzero(&cell, sizeof(srslte_cell_t));
bzero(sf_buffer, sizeof(sf_buffer));
running = false;
}
async_scell_recv::~async_scell_recv()
{
if (initiated) {
srslte_ue_sync_free(&ue_sync);
}
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
if (sf_buffer[i]) {
free(sf_buffer[i]);
}
}
}
static int radio_recv_callback(void* obj, cf_t* data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* rx_time)
{
return ((async_scell_recv*)obj)->radio_recv_fnc(data, nsamples, rx_time);
}
static double callback_set_rx_gain(void* h, double gain)
{
return ((async_scell_recv*)h)->set_rx_gain(gain);
}
void async_scell_recv::init(srslte::radio* _radio_handler, phy_common* _worker_com, srslte::log* _log_h)
{
// Get handlers
radio_h = _radio_handler;
worker_com = _worker_com;
log_h = _log_h;
// Calculate number of RF channels
uint32_t nof_rf_channels = worker_com->args->nof_rf_channels * worker_com->args->nof_rx_ant;
// Initialise buffers
for (uint32_t s = 0; s < ASYNC_NOF_BUFFERS; s++) {
buffers[s].init(nof_rf_channels);
}
for (uint32_t i = 0; i < nof_rf_channels; i++) {
sf_buffer[i] = (cf_t*)srslte_vec_malloc(sizeof(cf_t) * SRSLTE_SF_LEN_MAX * 5);
if (!sf_buffer[i]) {
fprintf(stderr, "Error allocating buffer\n");
return;
}
}
if (srslte_ue_sync_init_multi(&ue_sync, SRSLTE_MAX_PRB, false, radio_recv_callback, nof_rf_channels, this)) {
fprintf(stderr, "SYNC: Initiating ue_sync\n");
return;
}
if (srslte_ue_mib_init(&ue_mib, sf_buffer, SRSLTE_MAX_PRB)) {
fprintf(stderr, "Error initaiting UE MIB decoder\n");
return;
}
if (pthread_cond_init(&cvar_buffer, NULL)) {
fprintf(stderr, "Initiating condition var\n");
return;
}
reset();
running = false;
initiated = true;
}
void async_scell_recv::stop()
{
running = false;
wait_thread_finish();
pthread_mutex_destroy(&mutex_buffer);
pthread_mutex_destroy(&mutex_uesync);
pthread_cond_destroy(&cvar_buffer);
}
void async_scell_recv::in_sync()
{
in_sync_cnt++;
// Send RRC in-sync signal after 100 ms consecutive subframes
if (in_sync_cnt == NOF_IN_SYNC_SF) {
in_sync_cnt = 0;
out_of_sync_cnt = 0;
}
}
void async_scell_recv::out_of_sync()
{
// Send RRC out-of-sync signal after 200 ms consecutive subframes
Info("Out-of-sync %d/%d\n", out_of_sync_cnt, NOF_OUT_OF_SYNC_SF);
out_of_sync_cnt++;
if (out_of_sync_cnt == NOF_OUT_OF_SYNC_SF) {
Info("Sending to RRC\n");
out_of_sync_cnt = 0;
in_sync_cnt = 0;
}
}
void async_scell_recv::set_cfo(float cfo)
{
srslte_ue_sync_set_cfo_ref(&ue_sync, cfo);
}
void async_scell_recv::set_agc_enable(bool enable)
{
do_agc = enable;
if (do_agc) {
if (radio_h) {
srslte_rf_info_t* rf_info = radio_h->get_info();
srslte_ue_sync_start_agc(
&ue_sync, callback_set_rx_gain, rf_info->min_rx_gain, rf_info->max_rx_gain, radio_h->get_rx_gain());
} else {
fprintf(stderr, "Error setting Secondary cell AGC: PHY not initiated\n");
}
} else {
fprintf(stderr, "Error stopping AGC: not implemented\n");
}
}
double async_scell_recv::set_rx_gain(double gain)
{
return radio_h->set_rx_gain_th((float)gain);
}
int async_scell_recv::radio_recv_fnc(cf_t* data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* rx_time)
{
int ret = 0;
if (running) {
if (radio_h->rx_now(data, nsamples, rx_time)) {
log_h->debug("SYNC: received %d samples from radio\n", nsamples);
ret = nsamples;
} else {
ret = SRSLTE_ERROR;
}
}
return ret;
}
void async_scell_recv::reset()
{
in_sync_cnt = 0;
out_of_sync_cnt = 0;
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
current_earfcn[i] = UINT32_MAX;
}
}
void async_scell_recv::radio_error()
{
log_h->error("SYNC: Receiving from radio.\n");
// Need to find a method to effectively reset radio, reloading the driver does not work
radio_h->reset();
}
void async_scell_recv::set_ue_sync_opts(srslte_ue_sync_t* q, float cfo)
{
if (worker_com->args->cfo_integer_enabled) {
srslte_ue_sync_set_cfo_i_enable(q, true);
}
srslte_ue_sync_set_cfo_ema(q, worker_com->args->cfo_pss_ema);
srslte_ue_sync_set_cfo_tol(q, worker_com->args->cfo_correct_tol_hz);
srslte_ue_sync_set_cfo_loop_bw(q,
worker_com->args->cfo_loop_bw_pss,
worker_com->args->cfo_loop_bw_ref,
worker_com->args->cfo_loop_pss_tol,
worker_com->args->cfo_loop_ref_min,
worker_com->args->cfo_loop_pss_tol,
worker_com->args->cfo_loop_pss_conv);
q->strack.pss.chest_on_filter = worker_com->args->sic_pss_enabled;
// Disable CP based CFO estimation during find
if (cfo != 0) {
q->cfo_current_value = cfo / 15000;
q->cfo_is_copied = true;
q->cfo_correct_enable_find = true;
srslte_sync_set_cfo_cp_enable(&q->sfind, false, 0);
}
// Set SFO ema and correct period
srslte_ue_sync_set_sfo_correct_period(q, worker_com->args->sfo_correct_period);
srslte_ue_sync_set_sfo_ema(q, worker_com->args->sfo_ema);
srslte_sync_set_sss_algorithm(&q->strack, SSS_FULL);
srslte_sync_set_sss_algorithm(&q->sfind, SSS_FULL);
}
bool async_scell_recv::set_scell_cell(uint32_t carrier_idx, srslte_cell_t* _cell, uint32_t dl_earfcn)
{
bool ret = true;
bool reset_ue_sync = false;
Info("Set cell:{nof_prb=%d; cp=%s; id=%d} dl_earfcn=%d\n",
_cell->nof_prb,
srslte_cp_string(_cell->cp),
_cell->id,
dl_earfcn);
// Lock mutex
pthread_mutex_lock(&mutex_uesync);
// Get transceiver mapping
carrier_map_t* m = &worker_com->args->carrier_map[carrier_idx];
uint32_t channel_idx = m->channel_idx;
// Set radio frequency if frequency changed
if (current_earfcn[channel_idx] != dl_earfcn && ret) {
dl_freq = srslte_band_fd(dl_earfcn) * 1e6f;
ul_freq = srslte_band_fu(srslte_band_ul_earfcn(dl_earfcn)) * 1e6f;
radio_h->set_rx_freq(channel_idx, dl_freq);
radio_h->set_tx_freq(channel_idx, ul_freq);
Info("Setting DL: %.1f MHz; UL %.1fMHz; Radio/Chan: %d/%d\n",
dl_freq / 1e6,
ul_freq / 1e6,
m->radio_idx,
m->channel_idx);
ul_dl_factor = ul_freq / dl_freq;
current_earfcn[channel_idx] = dl_earfcn;
reset_ue_sync = true;
}
// Detect change in cell configuration
if (memcmp(&cell, _cell, sizeof(srslte_cell_t)) != 0) {
// Set sampling rate, if number of PRB changed
if (cell.nof_prb != _cell->nof_prb && ret) {
double srate = srslte_sampling_freq_hz(_cell->nof_prb);
if (srate < 10e6) {
radio_h->set_master_clock_rate(4 * srate);
} else {
radio_h->set_master_clock_rate(srate);
}
radio_h->set_rx_srate(srate);
radio_h->set_tx_srate(srate);
Info("Setting SRate to %.2f MHz\n", srate / 1e6);
}
// Copy cell
memcpy(&cell, _cell, sizeof(srslte_cell_t));
reset_ue_sync = true;
// Set cell in ue sync
if (srslte_ue_sync_set_cell(&ue_sync, cell)) {
Error("SYNC: Setting cell: initiating ue_sync\n");
ret = false;
}
// Set cell in MIB decoder
if (srslte_ue_mib_set_cell(&ue_mib, cell)) {
fprintf(stderr, "Error setting cell in UE MIB decoder\n");
ret = false;
}
srslte_ue_mib_reset(&ue_mib);
}
// Reset ue_sync and set CFO/gain from search procedure
if (reset_ue_sync) {
srslte_ue_sync_reset(&ue_sync);
}
// Reset thread state
state = DECODE_MIB;
// If not running start!
if (!running) {
// Start main thread
start(1);
running = true;
}
pthread_mutex_unlock(&mutex_uesync);
return ret;
}
void async_scell_recv::state_decode_mib()
{
int sfn_offset = 0;
uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN];
uint32_t sfidx = srslte_ue_sync_get_sfidx(&ue_sync);
if (sfidx == 0) {
// Run only for sub-frame index 0
int n = srslte_ue_mib_decode(&ue_mib, bch_payload, NULL, &sfn_offset);
if (n < SRSLTE_SUCCESS) {
// Error decoding MIB, log error
Error("Error decoding UE MIB (%d)\n", n);
} else if (n == SRSLTE_UE_MIB_FOUND) {
// MIB Found
uint32_t sfn = 0;
srslte_pbch_mib_unpack(bch_payload, &cell, &sfn);
Info("SCell MIB synchronised (SNR=%.2fdB)\n", ue_mib.chest_res.snr_db);
// Set sub-frame index
tti = ((sfn + sfn_offset) % 1024) * 10;
// Change state, reset ring buffer and go to Synchronized but idle
buffer_write_idx = 0;
buffer_read_idx = 0;
state = SYNCH_IDLE;
} else {
// MIB Not found
// Do nothing. Keep going.
}
} else {
// Do nothing. Keep going.
}
}
void async_scell_recv::state_write_buffer()
{
if (tti % SRSLTE_NOF_SF_X_FRAME != srslte_ue_sync_get_sfidx(&ue_sync) || ue_sync.state != SF_TRACK) {
// Real-time failure, go to decode MIB
Info("Detected Real-Time failure; Going to search MIB (from WRITE)\n");
state = DECODE_MIB;
} else {
// Normal operation, try to write buffer
phch_scell_recv_buffer* buffer = &buffers[buffer_write_idx];
srslte_timestamp_t rx_time = {};
// Lock mutex
pthread_mutex_lock(&mutex_buffer);
// Copy last timestamp
srslte_ue_sync_get_last_timestamp(&ue_sync, &rx_time);
// Extract essential information
buffer->set_sf(tti, &rx_time);
// Increment write index
buffer_write_idx = (buffer_write_idx + 1) % ASYNC_NOF_BUFFERS;
// Detect overflow
if (buffer_write_idx == buffer_read_idx) {
// Reset buffer and goto synchronized IDLE
Info("Detected overflow; reseting ring buffer and going to IDLE...\n");
buffer_write_idx = 0;
buffer_read_idx = 0;
state = SYNCH_IDLE;
}
// Unlock mutex and inform that data was received
pthread_cond_broadcast(&cvar_buffer);
pthread_mutex_unlock(&mutex_buffer);
}
}
void async_scell_recv::state_synch_idle()
{
if (tti % SRSLTE_NOF_SF_X_FRAME != srslte_ue_sync_get_sfidx(&ue_sync)) {
// Real-time failure, go to decode MIB
Debug("Detected Real-Time failure; Going to search MIB (from IDLE)\n");
state = DECODE_MIB;
} else {
// Do nothing
}
}
void async_scell_recv::run_thread()
{
Info("Starting asynchronous scell reception...\n");
while (running) {
phch_scell_recv_buffer* buffer = &buffers[buffer_write_idx];
// Lock ue_sync
pthread_mutex_lock(&mutex_uesync);
// Get RF base-band
int ret = srslte_ue_sync_zerocopy(&ue_sync, (state == DECODE_MIB) ? sf_buffer : buffer->get_buffer_ptr());
if (ret < 0) {
fprintf(stderr, "Error calling srslte_ue_sync_work()\n");
}
// Unlock ue_sync
pthread_mutex_unlock(&mutex_uesync);
if (ret == 1) {
// Synchronized
switch (state) {
case DECODE_MIB:
state_decode_mib();
break;
case WRITE_BUFFER:
state_write_buffer();
break;
case SYNCH_IDLE:
state_synch_idle();
break;
}
// Increment tti
tti = (tti + 1) % 10240;
} else if (ret == 0) {
// Error in synchronization
// Warning("SYNC: Out-of-sync detected in PSS/SSS\n");
// out_of_sync();
}
if (ret < 0) {
// Radio error
radio_error();
}
}
}
bool async_scell_recv::tti_align(uint32_t tti)
{
bool ret = false;
if (state == SYNCH_IDLE) {
// Enable Writing in buffer
Debug("Start writing in buffer\n");
state = WRITE_BUFFER;
} else if (state == DECODE_MIB) {
// Debug("SCell not ready for reading\n");
return false;
}
pthread_mutex_lock(&mutex_buffer);
// Stage 1: Flush buffers if the tti is not available
// While data is available and no tti match, discard
while ((buffer_write_idx != buffer_read_idx) && (buffers[buffer_read_idx].get_tti() != tti)) {
// Discard buffer
Error("Expected TTI %d. Discarding tti %d.\n", tti, buffers[buffer_read_idx].get_tti());
buffer_read_idx = (buffer_read_idx + 1) % ASYNC_NOF_BUFFERS;
}
if ((buffers[buffer_read_idx].get_tti() == tti)) {
// tti match
ret = true;
}
// Stage 2: If the tti is not found and the latest tti was -1; wait
// Get time and set timeout time
if (!ret) {
bool timedout = false;
while (!ret && !timedout && buffer_write_idx == buffer_read_idx && running) {
struct timespec timeToWait;
struct timeval now;
gettimeofday(&now, NULL);
timeToWait.tv_sec = now.tv_sec;
timeToWait.tv_nsec = (now.tv_usec + 1000UL) * 1000UL;
int rt = pthread_cond_timedwait(&cvar_buffer, &mutex_buffer, &timeToWait);
switch (rt) {
case ETIMEDOUT:
case EPERM:
// Consider all errors timed out, exit loop
timedout = true;
Error("Expected TTI %04d. timeout (%d).\n", tti, rt);
tti_align_timeout_counter++;
if (tti_align_timeout_counter > max_tti_align_timeout_counter) {
Error("Maximum number of timeouts reached (%d). Going back to decode MIB.\n",
max_tti_align_timeout_counter);
state = DECODE_MIB;
}
break;
default:
if ((buffers[buffer_read_idx].get_tti() == tti)) {
// tti match
ret = true;
}
break;
}
}
}
pthread_mutex_unlock(&mutex_buffer);
return ret;
}
void async_scell_recv::read_sf(cf_t** dst, srslte_timestamp_t* timestamp)
{
pthread_mutex_lock(&mutex_buffer);
// Block until data is filled
while (buffer_write_idx == buffer_read_idx && running) {
pthread_cond_wait(&cvar_buffer, &mutex_buffer);
}
// Exit condition detected
if (!running) {
pthread_mutex_unlock(&mutex_buffer);
return;
}
// Get reading buffer
phch_scell_recv_buffer* buffer = &buffers[buffer_read_idx];
if (dst) {
// Get data pointer
cf_t** buff = buffer->get_buffer_ptr();
uint32_t nof_rf_channels = worker_com->args->nof_rf_channels * worker_com->args->nof_rx_ant;
// Copy data
for (uint32_t i = 0; i < nof_rf_channels; i++) {
if (dst[i]) {
// Check pointer is allocated
memcpy(dst[i], buff[i], sizeof(cf_t) * SRSLTE_SF_LEN_PRB(cell.nof_prb));
}
}
}
buffer->get_timestamp(timestamp);
// Increment read index
buffer_read_idx = (buffer_read_idx + 1) % ASYNC_NOF_BUFFERS;
pthread_mutex_unlock(&mutex_buffer);
}
} // namespace srsue