You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

347 lines
8.9 KiB
C

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/******************************************************************************
* File: timers.h
* Description: Manually incremented timers. Call a callback function upon
* expiry.
* Reference:
*****************************************************************************/
#ifndef SRSLTE_TIMERS_H
#define SRSLTE_TIMERS_H
#include <functional>
#include <queue>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include <vector>
#include "srslte/srslte.h"
namespace srslte {
class timer_callback
{
public:
virtual void timer_expired(uint32_t timer_id) = 0;
};
class timers
{
public:
class timer
{
public:
timer(uint32_t id_=0) {id = id_; counter = 0; timeout = 0; running = false; callback = NULL; }
void set(timer_callback *callback_, uint32_t timeout_) {
callback = callback_;
timeout = timeout_;
reset();
}
bool is_running() {
return (counter < timeout) && running;
}
bool is_expired() {
return (timeout > 0) && (counter >= timeout);
}
uint32_t get_timeout() {
return timeout;
}
void reset() {
counter = 0;
}
uint32_t value() {
return counter;
}
void step() {
if (running) {
counter++;
if (is_expired()) {
running = false;
if (callback) {
callback->timer_expired(id);
}
}
}
}
void stop() {
running = false;
}
void run() {
running = true;
}
uint32_t id;
private:
timer_callback *callback;
uint32_t timeout;
uint32_t counter;
bool running;
};
timers(uint32_t nof_timers_) : timer_list(nof_timers_), used_timers(nof_timers_)
{
nof_timers = nof_timers_;
next_timer = 0;
nof_used_timers = 0;
for (uint32_t i = 0; i < nof_timers; i++) {
timer_list[i].id = i;
used_timers[i] = false;
}
}
void step_all() {
for (uint32_t i=0;i<nof_timers;i++) {
get(i)->step();
}
}
void stop_all() {
for (uint32_t i=0;i<nof_timers;i++) {
get(i)->stop();
}
}
void run_all() {
for (uint32_t i=0;i<nof_timers;i++) {
get(i)->run();
}
}
void reset_all() {
for (uint32_t i=0;i<nof_timers;i++) {
get(i)->reset();
}
}
timer *get(uint32_t i) {
if (i < nof_timers) {
return &timer_list[i];
} else {
printf("Error accessing invalid timer %d (Only %d timers available)\n", i, nof_timers);
return NULL;
}
}
void release_id(uint32_t i) {
if (nof_used_timers > 0 && i < nof_timers) {
used_timers[i] = false;
nof_used_timers--;
} else {
ERROR("Error releasing timer id=%d: nof_used_timers=%d, nof_timers=%d\n", i, nof_used_timers, nof_timers);
}
}
uint32_t get_unique_id() {
if (nof_used_timers >= nof_timers) {
ERROR("Error getting unique timer id: no more timers available\n");
return 0;
} else {
for (uint32_t i=0;i<nof_timers;i++) {
if (!used_timers[i]) {
used_timers[i] = true;
nof_used_timers++;
return i;
}
}
ERROR("Error getting unique timer id: no more timers available but nof_used_timers=%d, nof_timers=%d\n",
nof_used_timers,
nof_timers);
return 0;
}
}
private:
uint32_t next_timer;
uint32_t nof_used_timers;
uint32_t nof_timers;
std::vector<timer> timer_list;
std::vector<bool> used_timers;
};
class timers2
{
struct timer_impl {
timers2* parent;
uint32_t duration = 0, timeout = 0;
bool running = false;
bool active = false;
std::function<void(uint32_t)> callback;
explicit timer_impl(timers2* parent_) : parent(parent_) {}
uint32_t id() const { return std::distance((const timers2::timer_impl*)&parent->timer_list[0], this); }
bool is_running() const { return active and running and timeout > 0; }
bool is_expired() const { return active and not running and timeout > 0; }
void set(uint32_t duration_, std::function<void(int)> callback_)
{
if (not active) {
ERROR("Error: setting inactive timer id=%d\n", id());
return;
}
callback = std::move(callback_);
duration = duration_;
running = false; // invalidates any on-going run
}
void set(uint32_t duration_)
{
if (not active) {
ERROR("Error: setting inactive timer id=%d\n", id());
return;
}
duration = duration_;
running = false; // invalidates any on-going run
}
void run()
{
if (not active) {
ERROR("Error: calling run() for inactive timer id=%d\n", id());
return;
}
timeout = parent->cur_time + duration;
parent->running_timers.emplace(parent, id(), timeout);
running = true;
}
void clear()
{
timeout = 0;
duration = 0;
running = false;
active = false;
callback = std::function<void(uint32_t)>();
// leave run_id unchanged;
}
void trigger()
{
if (is_running()) {
callback(id());
running = false;
}
}
};
public:
class unique_timer
{
public:
explicit unique_timer(timers2* parent_, uint32_t timer_id_) : parent(parent_), timer_id(timer_id_) {}
unique_timer(const unique_timer&) = delete;
unique_timer(unique_timer&& other) noexcept : parent(other.parent), timer_id(other.timer_id)
{
other.parent = nullptr;
}
~unique_timer()
{
if (parent) {
// does not call callback
impl()->clear();
}
}
unique_timer& operator=(const unique_timer&) = delete;
unique_timer& operator =(unique_timer&& other) noexcept
{
if (this != &other) {
timer_id = other.timer_id;
parent = other.parent;
other.parent = nullptr;
}
return *this;
}
void set(uint32_t duration_, const std::function<void(int)>& callback_) { impl()->set(duration_, callback_); }
void set(uint32_t duration_) { impl()->set(duration_); }
bool is_running() const { return impl()->is_running(); }
bool is_expired() const { return impl()->is_expired(); }
void run() { impl()->run(); }
void stop() { impl()->running = false; }
uint32_t id() const { return timer_id; }
private:
timer_impl* impl() { return &parent->timer_list[timer_id]; }
const timer_impl* impl() const { return &parent->timer_list[timer_id]; }
timers2* parent;
uint32_t timer_id;
};
void step_all()
{
cur_time++;
while (not running_timers.empty() and cur_time > running_timers.top().timeout) {
timer_impl* ptr = &timer_list[running_timers.top().timer_id];
// if the timer_run and timer_impl timeouts do not match, it means that timer_impl::timeout was overwritten.
// in such case, do not trigger
if (ptr->timeout == running_timers.top().timeout) {
ptr->trigger();
}
running_timers.pop();
}
}
void stop_all()
{
// does not call callback
while (not running_timers.empty()) {
running_timers.pop();
}
for (uint32_t i = 0; i < timer_list.size(); ++i) {
timer_list[i].running = false;
}
}
unique_timer get_unique_timer()
{
uint32_t i = 0;
for (; i < timer_list.size(); ++i) {
if (not timer_list[i].active) {
break;
}
}
if (i == timer_list.size()) {
timer_list.emplace_back(this);
}
timer_list[i].active = true;
return unique_timer(this, i);
}
uint32_t get_cur_time() const { return cur_time; }
private:
struct timer_run {
timers2* parent;
uint32_t timer_id;
uint32_t timeout;
timer_run(timers2* parent_, uint32_t timer_id_, uint32_t timeout_) :
parent(parent_),
timer_id(timer_id_),
timeout(timeout_)
{
}
bool operator<(const timer_run& other) const { return timeout > other.timeout; }
};
std::vector<timer_impl> timer_list;
std::priority_queue<timer_run> running_timers;
uint32_t cur_time = 0;
};
} // namespace srslte
#endif // SRSLTE_TIMERS_H