|
|
|
/**
|
|
|
|
*
|
|
|
|
* \section COPYRIGHT
|
|
|
|
*
|
|
|
|
* Copyright 2013-2015 The srsLTE Developers. See the
|
|
|
|
* COPYRIGHT file at the top-level directory of this distribution.
|
|
|
|
*
|
|
|
|
* \section LICENSE
|
|
|
|
*
|
|
|
|
* This file is part of the srsLTE library.
|
|
|
|
*
|
|
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as
|
|
|
|
* published by the Free Software Foundation, either version 3 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
|
|
* and at http://www.gnu.org/licenses/.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <complex.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#include "srslte/common/phy_common.h"
|
|
|
|
#include "srslte/mimo/precoding.h"
|
|
|
|
#include "srslte/utils/vector.h"
|
|
|
|
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#include <pmmintrin.h>
|
|
|
|
int srslte_predecoding_single_sse(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
|
|
#include <immintrin.h>
|
|
|
|
int srslte_predecoding_single_avx(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************
|
|
|
|
*
|
|
|
|
* RECEIVER SIDE FUNCTIONS
|
|
|
|
*
|
|
|
|
**************************************************/
|
|
|
|
|
|
|
|
int srslte_precoding_init(srslte_precoding_t *q, uint32_t max_frame_len) {
|
|
|
|
if (q) {
|
|
|
|
bzero(q, sizeof(srslte_precoding_t));
|
|
|
|
|
|
|
|
q->h_mod = srslte_vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
|
|
if (!q->h_mod) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->tmp1 = srslte_vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
|
|
if (!q->tmp1) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->tmp2 = srslte_vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
|
|
if (!q->tmp2) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->tmp3 = srslte_vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
|
|
if (!q->tmp3) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->y_mod = srslte_vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
if (!q->y_mod) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->z_real = srslte_vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
if (!q->z_real) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->z_imag = srslte_vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
if (!q->z_imag) {
|
|
|
|
perror("malloc");
|
|
|
|
goto clean_exit;
|
|
|
|
}
|
|
|
|
q->max_frame_len = max_frame_len;
|
|
|
|
return SRSLTE_SUCCESS;
|
|
|
|
} else {
|
|
|
|
return SRSLTE_ERROR_INVALID_INPUTS;
|
|
|
|
}
|
|
|
|
clean_exit:
|
|
|
|
srslte_precoding_free(q);
|
|
|
|
return SRSLTE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
void srslte_precoding_free(srslte_precoding_t *q) {
|
|
|
|
|
|
|
|
if (q->tmp1) {
|
|
|
|
free(q->tmp1);
|
|
|
|
}
|
|
|
|
if (q->tmp2) {
|
|
|
|
free(q->tmp2);
|
|
|
|
}
|
|
|
|
if (q->tmp3) {
|
|
|
|
free(q->tmp3);
|
|
|
|
}
|
|
|
|
if (q->h_mod) {
|
|
|
|
free(q->h_mod);
|
|
|
|
}
|
|
|
|
if (q->y_mod) {
|
|
|
|
free(q->y_mod);
|
|
|
|
}
|
|
|
|
if (q->z_real) {
|
|
|
|
free(q->z_real);
|
|
|
|
}
|
|
|
|
if (q->z_imag) {
|
|
|
|
free(q->z_imag);
|
|
|
|
}
|
|
|
|
bzero(q, sizeof(srslte_precoding_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
|
|
|
|
|
|
#define PROD(a,b) _mm_addsub_ps(_mm_mul_ps(a,_mm_moveldup_ps(b)),_mm_mul_ps(_mm_shuffle_ps(a,a,0xB1),_mm_movehdup_ps(b)))
|
|
|
|
|
|
|
|
int srslte_predecoding_single_sse(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
|
|
|
|
float *xPtr = (float*) x;
|
|
|
|
const float *hPtr = (const float*) h;
|
|
|
|
const float *yPtr = (const float*) y;
|
|
|
|
|
|
|
|
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
|
|
|
|
|
|
|
|
__m128 noise = _mm_set1_ps(noise_estimate);
|
|
|
|
__m128 h1Val, h2Val, y1Val, y2Val, h12square, h1square, h2square, h1conj, h2conj, x1Val, x2Val;
|
|
|
|
for (int i=0;i<nof_symbols/4;i++) {
|
|
|
|
y1Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
|
|
y2Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
|
|
h1Val = _mm_load_ps(hPtr); hPtr+=4;
|
|
|
|
h2Val = _mm_load_ps(hPtr); hPtr+=4;
|
|
|
|
|
|
|
|
h12square = _mm_hadd_ps(_mm_mul_ps(h1Val, h1Val), _mm_mul_ps(h2Val, h2Val));
|
|
|
|
if (noise_estimate > 0) {
|
|
|
|
h12square = _mm_add_ps(h12square, noise);
|
|
|
|
}
|
|
|
|
|
|
|
|
h1square = _mm_shuffle_ps(h12square, h12square, _MM_SHUFFLE(1, 1, 0, 0));
|
|
|
|
h2square = _mm_shuffle_ps(h12square, h12square, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
|
|
|
|
/* Conjugate channel */
|
|
|
|
h1conj = _mm_xor_ps(h1Val, conjugator);
|
|
|
|
h2conj = _mm_xor_ps(h2Val, conjugator);
|
|
|
|
|
|
|
|
/* Complex product */
|
|
|
|
x1Val = PROD(y1Val, h1conj);
|
|
|
|
x2Val = PROD(y2Val, h2conj);
|
|
|
|
|
|
|
|
x1Val = _mm_div_ps(x1Val, h1square);
|
|
|
|
x2Val = _mm_div_ps(x2Val, h2square);
|
|
|
|
|
|
|
|
_mm_store_ps(xPtr, x1Val); xPtr+=4;
|
|
|
|
_mm_store_ps(xPtr, x2Val); xPtr+=4;
|
|
|
|
}
|
|
|
|
for (int i=8*(nof_symbols/8);i<nof_symbols;i++) {
|
|
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
|
|
}
|
|
|
|
return nof_symbols;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
|
|
|
|
|
|
#define PROD_AVX(a,b) _mm256_addsub_ps(_mm256_mul_ps(a,_mm256_moveldup_ps(b)),_mm256_mul_ps(_mm256_shuffle_ps(a,a,0xB1),_mm256_movehdup_ps(b)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int srslte_predecoding_single_avx(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
|
|
|
|
float *xPtr = (float*) x;
|
|
|
|
const float *hPtr = (const float*) h;
|
|
|
|
const float *yPtr = (const float*) y;
|
|
|
|
|
|
|
|
__m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
|
|
|
|
|
|
|
|
__m256 noise = _mm256_set1_ps(noise_estimate);
|
|
|
|
__m256 h1Val, h2Val, y1Val, y2Val, h12square, h1square, h2square, h1_p, h2_p, h1conj, h2conj, x1Val, x2Val;
|
|
|
|
|
|
|
|
for (int i=0;i<nof_symbols/8;i++) {
|
|
|
|
y1Val = _mm256_load_ps(yPtr); yPtr+=8;
|
|
|
|
y2Val = _mm256_load_ps(yPtr); yPtr+=8;
|
|
|
|
h1Val = _mm256_load_ps(hPtr); hPtr+=8;
|
|
|
|
h2Val = _mm256_load_ps(hPtr); hPtr+=8;
|
|
|
|
|
|
|
|
__m256 t1 = _mm256_mul_ps(h1Val, h1Val);
|
|
|
|
__m256 t2 = _mm256_mul_ps(h2Val, h2Val);
|
|
|
|
h12square = _mm256_hadd_ps(_mm256_permute2f128_ps(t1, t2, 0x20), _mm256_permute2f128_ps(t1, t2, 0x31));
|
|
|
|
if (noise_estimate > 0) {
|
|
|
|
h12square = _mm256_add_ps(h12square, noise);
|
|
|
|
}
|
|
|
|
h1_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(1, 1, 0, 0));
|
|
|
|
h2_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
h1square = _mm256_permute2f128_ps(h1_p, h2_p, 2<<4);
|
|
|
|
h2square = _mm256_permute2f128_ps(h1_p, h2_p, 3<<4 | 1);
|
|
|
|
|
|
|
|
/* Conjugate channel */
|
|
|
|
h1conj = _mm256_xor_ps(h1Val, conjugator);
|
|
|
|
h2conj = _mm256_xor_ps(h2Val, conjugator);
|
|
|
|
|
|
|
|
/* Complex product */
|
|
|
|
x1Val = PROD_AVX(y1Val, h1conj);
|
|
|
|
x2Val = PROD_AVX(y2Val, h2conj);
|
|
|
|
|
|
|
|
x1Val = _mm256_div_ps(x1Val, h1square);
|
|
|
|
x2Val = _mm256_div_ps(x2Val, h2square);
|
|
|
|
|
|
|
|
_mm256_store_ps(xPtr, x1Val); xPtr+=8;
|
|
|
|
_mm256_store_ps(xPtr, x2Val); xPtr+=8;
|
|
|
|
}
|
|
|
|
for (int i=16*(nof_symbols/16);i<nof_symbols;i++) {
|
|
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
|
|
}
|
|
|
|
return nof_symbols;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int srslte_predecoding_single_gen(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
for (int i=0;i<nof_symbols;i++) {
|
|
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
|
|
}
|
|
|
|
return nof_symbols;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/
|
|
|
|
int srslte_predecoding_single(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
|
|
if (nof_symbols > 32) {
|
|
|
|
return srslte_predecoding_single_avx(y, h, x, nof_symbols, noise_estimate);
|
|
|
|
} else {
|
|
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
|
|
if (nof_symbols > 32) {
|
|
|
|
return srslte_predecoding_single_sse(y, h, x, nof_symbols, noise_estimate);
|
|
|
|
} else {
|
|
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ZF/MMSE STBC equalizer x=y(H'H+n0·I)^(-1)H' (ZF is n0=0.0)
|
|
|
|
*/
|
|
|
|
int srslte_predecoding_diversity(srslte_precoding_t *q, cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
|
|
int nof_ports, int nof_symbols, float noise_estimate)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
|
|
|
|
#define new
|
|
|
|
#ifdef new
|
|
|
|
|
|
|
|
// reuse buffers
|
|
|
|
cf_t *r0 = q->tmp3;
|
|
|
|
cf_t *r1 = &q->tmp3[nof_symbols/2];
|
|
|
|
cf_t *h0 = q->h_mod;
|
|
|
|
cf_t *h1 = &q->h_mod[nof_symbols/2];
|
|
|
|
|
|
|
|
float *modhh = q->y_mod;
|
|
|
|
float *modh0 = q->z_real;
|
|
|
|
float *modh1 = q->z_imag;
|
|
|
|
|
|
|
|
// prepare buffers
|
|
|
|
for (i=0;i<nof_symbols/2;i++) {
|
|
|
|
h0[i] = h[0][2*i]; // h0
|
|
|
|
h1[i] = h[1][2*i+1]; // h1
|
|
|
|
r0[i] = y[2*i]; // r0
|
|
|
|
r1[i] = y[2*i+1]; // r1
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute common dividend and store in y_mod
|
|
|
|
srslte_vec_abs_square_cf(h0, modh0, nof_symbols/2);
|
|
|
|
srslte_vec_abs_square_cf(h1, modh1, nof_symbols/2);
|
|
|
|
srslte_vec_sum_fff(modh0, modh1, modhh, nof_symbols/2);
|
|
|
|
//if (noise_estimate > 0.0) {
|
|
|
|
// (H'H + n0)
|
|
|
|
//srslte_vec_sc_add_fff(modhh, noise_estimate, modhh, nof_symbols/2);
|
|
|
|
//}
|
|
|
|
|
|
|
|
srslte_vec_sc_prod_fff(modhh, 1/sqrt(2), modhh, nof_symbols/2);
|
|
|
|
|
|
|
|
// x[0] = r0·h0*/(|h0|+|h1|)+r1*·h1/(|h0|+|h1|)
|
|
|
|
srslte_vec_prod_conj_ccc(r0,h0,q->tmp1, nof_symbols/2);
|
|
|
|
srslte_vec_prod_conj_ccc(h1,r1,q->tmp2, nof_symbols/2);
|
|
|
|
srslte_vec_sum_ccc(q->tmp1, q->tmp2, x[0], nof_symbols/2);
|
|
|
|
srslte_vec_div_cfc(x[0], modhh, x[0], q->z_real, q->z_imag, nof_symbols/2);
|
|
|
|
|
|
|
|
// x[1] = r1·h0*/(|h0|+|h1|)-r0*·h1/(|h0|+|h1|)
|
|
|
|
srslte_vec_prod_conj_ccc(r1,h0,q->tmp1, nof_symbols/2);
|
|
|
|
srslte_vec_prod_conj_ccc(h1,r0,q->tmp2, nof_symbols/2);
|
|
|
|
srslte_vec_sub_ccc(q->tmp1, q->tmp2, x[1], nof_symbols/2);
|
|
|
|
srslte_vec_div_cfc(x[1], modhh, x[1], q->z_real, q->z_imag, nof_symbols/2);
|
|
|
|
|
|
|
|
#else
|
|
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
|
|
float hh, hh02, hh13;
|
|
|
|
|
|
|
|
for (i = 0; i < nof_symbols / 2; i++) {
|
|
|
|
h0 = h[0][2 * i];
|
|
|
|
h1 = h[1][2 * i];
|
|
|
|
hh = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
+ crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1) + noise_estimate;
|
|
|
|
r0 = y[2 * i];
|
|
|
|
r1 = y[2 * i + 1];
|
|
|
|
if (hh == 0) {
|
|
|
|
hh = 1e-2;
|
|
|
|
}
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h1 * conjf(r1)) / hh * sqrt(2);
|
|
|
|
x[1][i] = (-h1 * conj(r0) + conj(h0) * r1) / hh * sqrt(2);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return i;
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
|
|
float hh02, hh13;
|
|
|
|
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
|
|
for (i = 0; i < m_ap; i++) {
|
|
|
|
h0 = h[0][4 * i];
|
|
|
|
h1 = h[1][4 * i + 2];
|
|
|
|
h2 = h[2][4 * i];
|
|
|
|
h3 = h[3][4 * i + 2];
|
|
|
|
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
|
|
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
|
|
r0 = y[4 * i];
|
|
|
|
r1 = y[4 * i + 1];
|
|
|
|
r2 = y[4 * i + 2];
|
|
|
|
r3 = y[4 * i + 3];
|
|
|
|
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
|
|
|
|
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
|
|
|
|
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
|
|
|
|
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
|
|
|
|
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
int srslte_predecoding_type(srslte_precoding_t *q, cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
|
|
int nof_ports, int nof_layers, int nof_symbols, srslte_mimo_type_t type, float noise_estimate) {
|
|
|
|
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
|
|
nof_ports);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
return srslte_predecoding_single(y, h[0], x[0], nof_symbols, noise_estimate);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
return srslte_predecoding_diversity(q, y, h, x, nof_ports, nof_symbols, noise_estimate);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************
|
|
|
|
*
|
|
|
|
* TRANSMITTER SIDE FUNCTIONS
|
|
|
|
*
|
|
|
|
**************************************************/
|
|
|
|
|
|
|
|
int srslte_precoding_single(srslte_precoding_t *q, cf_t *x, cf_t *y, int nof_symbols) {
|
|
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
|
|
return nof_symbols;
|
|
|
|
}
|
|
|
|
int srslte_precoding_diversity(srslte_precoding_t *q, cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_ports,
|
|
|
|
int nof_symbols) {
|
|
|
|
int i;
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
|
|
y[0][2 * i] = x[0][i];
|
|
|
|
y[1][2 * i] = -conjf(x[1][i]);
|
|
|
|
y[0][2 * i + 1] = x[1][i];
|
|
|
|
y[1][2 * i + 1] = conjf(x[0][i]);
|
|
|
|
}
|
|
|
|
// normalize
|
|
|
|
srslte_vec_sc_prod_cfc(y[0], 1.0/sqrtf(2), y[0], 2*nof_symbols);
|
|
|
|
srslte_vec_sc_prod_cfc(y[1], 1.0/sqrtf(2), y[1], 2*nof_symbols);
|
|
|
|
return 2 * i;
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
|
|
int m_ap = 4 * nof_symbols;
|
|
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
|
|
y[1][4 * i] = 0;
|
|
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
|
|
y[3][4 * i] = 0;
|
|
|
|
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
|
|
y[1][4 * i + 1] = 0;
|
|
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
|
|
y[2][4 * i + 2] = 0;
|
|
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
|
|
y[2][4 * i + 3] = 0;
|
|
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
|
|
}
|
|
|
|
return 4 * i;
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
int srslte_precoding_type(srslte_precoding_t *q, cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_layers,
|
|
|
|
int nof_ports, int nof_symbols, srslte_mimo_type_t type) {
|
|
|
|
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
|
|
nof_ports);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
return srslte_precoding_single(q, x[0], y[0], nof_symbols);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
return srslte_precoding_diversity(q, x, y, nof_ports, nof_symbols);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|