You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

234 lines
6.2 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSRAN_BYTE_BUFFER_H
#define SRSRAN_BYTE_BUFFER_H
#include "common.h"
#include "srsran/adt/span.h"
#include <chrono>
#include <cstdint>
//#define SRSRAN_BUFFER_POOL_LOG_ENABLED
#define SRSRAN_BUFFER_POOL_LOG_NAME_LEN 128
namespace srsran {
#define ENABLE_TIMESTAMP
struct buffer_latency_calc {
void clear()
{
#ifdef ENABLE_TIMESTAMP
timestamp_is_set = false;
#endif
}
std::chrono::microseconds get_latency_us() const
{
#ifdef ENABLE_TIMESTAMP
if (!timestamp_is_set) {
return std::chrono::microseconds{0};
}
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::now() - tp);
#else
return std::chrono::microseconds{0};
#endif
}
std::chrono::high_resolution_clock::time_point get_timestamp() const { return tp; }
void set_timestamp()
{
#ifdef ENABLE_TIMESTAMP
tp = std::chrono::high_resolution_clock::now();
timestamp_is_set = true;
#endif
}
void set_timestamp(std::chrono::high_resolution_clock::time_point tp_)
{
#ifdef ENABLE_TIMESTAMP
tp = tp_;
timestamp_is_set = true;
#endif
}
private:
#ifdef ENABLE_TIMESTAMP
std::chrono::high_resolution_clock::time_point tp;
bool timestamp_is_set = false;
#endif
};
/******************************************************************************
* Byte buffer
*
* Generic byte buffer with headroom to accommodate packet headers and custom
* copy constructors & assignment operators for quick copying. Byte buffer
* holds a next pointer to support linked lists.
*****************************************************************************/
class byte_buffer_t
{
public:
using iterator = uint8_t*;
using const_iterator = const uint8_t*;
uint32_t N_bytes = 0;
uint8_t buffer[SRSRAN_MAX_BUFFER_SIZE_BYTES];
uint8_t* msg = nullptr;
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
char debug_name[SRSRAN_BUFFER_POOL_LOG_NAME_LEN];
#endif
struct buffer_metadata_t {
uint32_t pdcp_sn = 0;
buffer_latency_calc tp;
} md;
byte_buffer_t() : msg(&buffer[SRSRAN_BUFFER_HEADER_OFFSET])
{
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
bzero(debug_name, SRSRAN_BUFFER_POOL_LOG_NAME_LEN);
#endif
}
explicit byte_buffer_t(uint32_t size) : msg(&buffer[SRSRAN_BUFFER_HEADER_OFFSET]), N_bytes(size)
{
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
bzero(debug_name, SRSRAN_BUFFER_POOL_LOG_NAME_LEN);
#endif
}
byte_buffer_t(uint32_t size, uint8_t val) : byte_buffer_t(size) { std::fill(msg, msg + N_bytes, val); }
byte_buffer_t(const byte_buffer_t& buf) : msg(&buffer[SRSRAN_BUFFER_HEADER_OFFSET]), md(buf.md), N_bytes(buf.N_bytes)
{
// copy actual contents
memcpy(msg, buf.msg, N_bytes);
}
byte_buffer_t& operator=(const byte_buffer_t& buf)
{
// avoid self assignment
if (&buf == this)
return *this;
msg = &buffer[buf.msg - &(*buf.buffer)];
N_bytes = buf.N_bytes;
md = buf.md;
memcpy(msg, buf.msg, N_bytes);
return *this;
}
void clear()
{
msg = &buffer[SRSRAN_BUFFER_HEADER_OFFSET];
N_bytes = 0;
md = {};
}
uint32_t get_headroom() { return msg - buffer; }
// Returns the remaining space from what is reported to be the length of msg
uint32_t get_tailroom() const { return (sizeof(buffer) - (msg - buffer) - N_bytes); }
std::chrono::microseconds get_latency_us() const { return md.tp.get_latency_us(); }
std::chrono::high_resolution_clock::time_point get_timestamp() const { return md.tp.get_timestamp(); }
void set_timestamp() { md.tp.set_timestamp(); }
void set_timestamp(std::chrono::high_resolution_clock::time_point tp_) { md.tp.set_timestamp(tp_); }
void append_bytes(uint8_t* buf, uint32_t size)
{
memcpy(&msg[N_bytes], buf, size);
N_bytes += size;
}
// vector-like interface
void resize(size_t size) { N_bytes = size; }
size_t capacity() const { return get_tailroom(); }
uint8_t* data() { return msg; }
const uint8_t* data() const { return msg; }
uint32_t size() const { return N_bytes; }
iterator begin() { return msg; }
const_iterator begin() const { return msg; }
iterator end() { return msg + N_bytes; }
const_iterator end() const { return msg + N_bytes; }
void* operator new(size_t sz);
void* operator new(size_t sz, const std::nothrow_t& nothrow_value) noexcept;
void* operator new[](size_t sz) = delete;
void operator delete(void* ptr);
void operator delete[](void* ptr) = delete;
};
struct bit_buffer_t {
uint32_t N_bits = 0;
uint8_t buffer[SRSRAN_MAX_BUFFER_SIZE_BITS];
uint8_t* msg = nullptr;
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
char debug_name[128];
#endif
bit_buffer_t() : msg(&buffer[SRSRAN_BUFFER_HEADER_OFFSET]) {}
bit_buffer_t(const bit_buffer_t& buf) : msg(&buffer[SRSRAN_BUFFER_HEADER_OFFSET]), N_bits(buf.N_bits)
{
memcpy(msg, buf.msg, N_bits);
}
bit_buffer_t& operator=(const bit_buffer_t& buf)
{
// avoid self assignment
if (&buf == this) {
return *this;
}
msg = &buffer[SRSRAN_BUFFER_HEADER_OFFSET];
N_bits = buf.N_bits;
memcpy(msg, buf.msg, N_bits);
return *this;
}
void clear()
{
msg = &buffer[SRSRAN_BUFFER_HEADER_OFFSET];
N_bits = 0;
}
uint32_t get_headroom() { return msg - buffer; }
};
using unique_byte_buffer_t = std::unique_ptr<byte_buffer_t>;
///
/// Utilities to create a span out of a byte_buffer.
///
using byte_span = span<uint8_t>;
using const_byte_span = span<const uint8_t>;
inline byte_span make_span(byte_buffer_t& b)
{
return byte_span{b.msg, b.N_bytes};
}
inline const_byte_span make_span(const byte_buffer_t& b)
{
return const_byte_span{b.msg, b.N_bytes};
}
inline byte_span make_span(unique_byte_buffer_t& b)
{
return byte_span{b->msg, b->N_bytes};
}
inline const_byte_span make_span(const unique_byte_buffer_t& b)
{
return const_byte_span{b->msg, b->N_bytes};
}
} // namespace srsran
#endif // SRSRAN_BYTE_BUFFER_H