You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/rlc/rlc_am_nr_test.cc

1495 lines
58 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "rlc_test_common.h"
#include "srsran/common/buffer_pool.h"
#include "srsran/common/rlc_pcap.h"
#include "srsran/common/test_common.h"
#include "srsran/common/threads.h"
#include "srsran/interfaces/ue_pdcp_interfaces.h"
#include "srsran/interfaces/ue_rrc_interfaces.h"
#include "srsran/rlc/rlc_am_nr.h"
#define NBUFS 5
#define HAVE_PCAP 0
#define SDU_SIZE 500
using namespace srsue;
using namespace srsran;
int basic_test_tx(rlc_am* rlc, byte_buffer_t pdu_bufs[NBUFS], rlc_am_nr_sn_size_t sn_size)
{
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
constexpr uint32_t payload_size = 1; // Give each buffer a size of 1 byte
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = payload_size; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc->write_sdu(std::move(sdu_bufs[i]));
}
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
uint32_t data_pdu_size = header_size + payload_size;
uint32_t expect_buffer_state = NBUFS * data_pdu_size;
TESTASSERT_EQ(expect_buffer_state, rlc->get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
for (int i = 0; i < NBUFS; i++) {
uint32_t len = rlc->read_pdu(pdu_bufs[i].msg, data_pdu_size);
pdu_bufs[i].N_bytes = len;
TESTASSERT_EQ(data_pdu_size, len);
}
TESTASSERT_EQ(0, rlc->get_buffer_state());
return SRSRAN_SUCCESS;
}
/*
* Test the limits of the TX/RX window checkers
*
*/
int window_checker_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("window checkers (%d bit SN)", to_number(sn_size));
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return SRSRAN_ERROR;
}
{
// RLC1 RX_NEXT == 0 and RLC2 TX_NEXT_ACK == 0
uint32_t sn_inside_below = 0;
uint32_t sn_inside_above = cardinality(sn_size) / 2 - 1;
uint32_t sn_outside_below = cardinality(sn_size) - 1;
uint32_t sn_outside_above = cardinality(sn_size) / 2;
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
}
rlc_am_nr_rx_state_t rx_st = {};
rx_st.rx_next = cardinality(sn_size) - 1;
;
rlc_am_nr_tx_state_t tx_st = {};
tx_st.tx_next_ack = cardinality(sn_size) - 1;
;
rx->set_rx_state(rx_st);
tx->set_tx_state(tx_st);
{
// RX_NEXT == 4095 TX_NEXT_ACK == 4095
uint32_t sn_inside_below = 0;
uint32_t sn_inside_above = cardinality(sn_size) / 2 - 2;
uint32_t sn_outside_below = cardinality(sn_size) - 2;
uint32_t sn_outside_above = cardinality(sn_size) / 2;
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
}
return SRSRAN_SUCCESS;
}
/*
* Test is retx_segmentation required
*
*/
int retx_segmentation_required_checker_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("retx segmentation required checkers (%d bit SN)", to_number(sn_size));
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return SRSRAN_ERROR;
}
unique_byte_buffer_t sdu_bufs[NBUFS];
unique_byte_buffer_t pdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
pdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 5; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
rlc1.read_pdu(pdu_bufs[i]->msg, 8);
}
// Test full SDU retx
{
uint32_t nof_bytes = 8;
rlc_amd_retx_nr_t retx = {};
retx.sn = 0;
retx.is_segment = false;
tx->is_retx_segmentation_required(retx, nof_bytes);
TESTASSERT_EQ(false, tx->is_retx_segmentation_required(retx, nof_bytes));
}
// Test SDU retx segmentation required
{
uint32_t nof_bytes = 4;
rlc_amd_retx_nr_t retx;
retx.sn = 0;
retx.is_segment = false;
tx->is_retx_segmentation_required(retx, nof_bytes);
TESTASSERT_EQ(true, tx->is_retx_segmentation_required(retx, nof_bytes));
}
// Test full SDU segment retx
{
uint32_t nof_bytes = 40;
rlc_amd_retx_nr_t retx = {};
retx.sn = 0;
retx.is_segment = true;
retx.so_start = 4;
retx.segment_length = 2;
tx->is_retx_segmentation_required(retx, nof_bytes);
TESTASSERT_EQ(false, tx->is_retx_segmentation_required(retx, nof_bytes));
}
// Test SDU segment retx segmentation required
{
uint32_t nof_bytes = 4;
rlc_amd_retx_nr_t retx = {};
retx.sn = 0;
retx.is_segment = true;
retx.so_start = 4;
retx.segment_length = 2;
tx->is_retx_segmentation_required(retx, nof_bytes);
TESTASSERT_EQ(true, tx->is_retx_segmentation_required(retx, nof_bytes));
}
return SRSRAN_SUCCESS;
}
/*
* Test the transmission and acknowledgement of 5 SDUs.
*
* Each SDU is transmitted as a single PDU.
* There are no lost PDUs, and the byte size is small, so the Poll_PDU configuration
* will trigger the status report.
* Poll PDU is configured to 4, so the 5th PDU should set the polling bit.
*/
int basic_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("basic tx/rx (%d bit SN)", to_number(sn_size));
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
// after configuring entity
TESTASSERT_EQ(0, rlc1.get_buffer_state());
basic_test_tx(&rlc1, pdu_bufs, sn_size);
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
TESTASSERT_EQ(3, rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 3);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the last SN that was not received.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check TX_NEXT_ACK
rlc_am_nr_tx_state_t st = tx1->get_tx_state();
TESTASSERT_EQ(5, st.tx_next_ack);
TESTASSERT_EQ(0, tx1->get_tx_window_size());
// Check PDCP notifications
TESTASSERT_EQ(5, tester.notified_counts.size());
for (uint16_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT_EQ(1, tester.sdus[i]->N_bytes);
TESTASSERT_EQ(i, *(tester.sdus[i]->msg));
TESTASSERT_EQ(1, tester.notified_counts[i]);
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
constexpr uint32_t payload_size = 1;
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
uint32_t data_pdu_size = header_size + payload_size;
constexpr uint32_t status_pdu_size = 3;
uint32_t total_tx_pdu_bytes = NBUFS * data_pdu_size; // NBUFS * PDU size
uint32_t total_rx_pdu_bytes = status_pdu_size; // One status PDU
// RLC1 PDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// RLC1 SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_pdus);
TESTASSERT_EQ(1, metrics1.num_rx_pdus); // One status PDU
TESTASSERT_EQ(total_tx_pdu_bytes, metrics1.num_tx_pdu_bytes); // NBUFS * PDU size
TESTASSERT_EQ(total_rx_pdu_bytes, metrics1.num_rx_pdu_bytes); // One status PDU
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// RLC2 PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// RLC2 SDU metrics
TESTASSERT_EQ(1, metrics2.num_tx_pdus); // One status PDU
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 SDUs
TESTASSERT_EQ(total_rx_pdu_bytes, metrics2.num_tx_pdu_bytes); // One status PDU
TESTASSERT_EQ(total_tx_pdu_bytes, metrics2.num_rx_pdu_bytes); // NBUFS * PDU size
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
/*
* Test the loss of a single PDU.
* NACK should be visible in the status report.
* Retx after NACK should be present too.
* No further status reports shall be issued.
*/
int lost_pdu_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("lost PDU (%d bit SN)", to_number(sn_size));
constexpr uint32_t payload_size = 1;
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
uint32_t data_pdu_size = header_size + payload_size;
uint32_t expect_buffer_state = NBUFS * data_pdu_size;
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
rlc_config_t rlc2_config = rlc_config_t::default_rlc_am_nr_config(to_number(sn_size));
if (not rlc2.configure(rlc2_config)) {
return -1;
}
// after configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
basic_test_tx(&rlc1, pdu_bufs, sn_size);
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
if (i != 3) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
}
}
// Only after t-reassembly has expired, will the status report include NACKs.
TESTASSERT_EQ(3, rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(3, status_check.ack_sn); // 3 is the next expected SN (i.e. the lost packet.)
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
// Step timers until reassambly timeout expires
for (int cnt = 0; cnt < 35; cnt++) {
timers.step_all();
}
// t-reassembly has expired. There should be a NACK in the status report.
constexpr uint32_t status_pdu_ack_size = 3;
uint32_t status_pdu_nack_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
TESTASSERT_EQ(status_pdu_ack_size + status_pdu_nack_size, rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
uint32_t len = rlc2.read_pdu(status_buf.msg, status_pdu_ack_size + status_pdu_nack_size);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
TESTASSERT_EQ(1, status_check.N_nack); // We lost one PDU.
TESTASSERT_EQ(3, status_check.nacks[0].nack_sn); // Lost PDU SN=3.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3
TESTASSERT_EQ(data_pdu_size, rlc1.get_buffer_state());
}
{
// Check correct re-transmission
byte_buffer_t retx_buf;
uint32_t len = rlc1.read_pdu(retx_buf.msg, data_pdu_size);
retx_buf.N_bytes = len;
TESTASSERT_EQ(data_pdu_size, len);
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
TESTASSERT_EQ(3, rlc2.get_buffer_state()); // Status report shoud be required, as the TX buffers are now empty.
}
{
// Double check status report
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 3);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
TESTASSERT_EQ(0, status_check.N_nack); // All PDUs are acked now
}
{
// rlc2 should not issue further status PDUs as time passes (even after expiry of t_status_prohibit)
int32_t checktime = 2 * rlc2_config.am_nr.t_status_prohibit;
for (int cnt = 0; cnt < checktime; cnt++) {
timers.step_all();
TESTASSERT_EQ(0, rlc2.get_buffer_state());
}
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
uint32_t total_tx_pdu_bytes1 = (NBUFS + 1) * data_pdu_size; // (NBUFS + 1 RETX) * PDU size
uint32_t total_rx_pdu_bytes1 = 2 * status_pdu_ack_size + status_pdu_nack_size; // Two status PDU (one with a NACK)
uint32_t total_tx_pdu_bytes2 =
3 * status_pdu_ack_size + status_pdu_nack_size; // Three status PDU (one with a NACK, two without)
uint32_t total_rx_pdu_bytes2 = (NBUFS)*data_pdu_size; // (NBUFS - 1 Lost + 1 RETX) * PDU size
// SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(5 + 1, metrics1.num_tx_pdus); // One re-transmission
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // One status PDU
TESTASSERT_EQ(total_tx_pdu_bytes1, metrics1.num_tx_pdu_bytes); // (NBUFS + 1 RETX) * PDU size
TESTASSERT_EQ(total_rx_pdu_bytes1, metrics1.num_rx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// SDU metrics
TESTASSERT_EQ(3, metrics2.num_tx_pdus); // Three status PDUs
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
TESTASSERT_EQ(total_tx_pdu_bytes2, metrics2.num_tx_pdu_bytes); // Three status PDU (one with a NACK, two without)
TESTASSERT_EQ(total_rx_pdu_bytes2, metrics2.num_rx_pdu_bytes); // (NBUFS - 1 Lost + 1 RETX) * PDU size
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
/*
* Test the basic segmentation of a single SDU.
* A single SDU of 3 bytes is segmented into 3 PDUs
*/
int basic_segmentation_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("basic segmentation (%d bit SN)", to_number(sn_size));
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
// after configuring entity
TESTASSERT_EQ(0, rlc1.get_buffer_state());
// Push 1 SDU into RLC1
unique_byte_buffer_t sdu;
constexpr uint32_t payload_size = 3; // Give the SDU the size of 3 bytes
sdu = srsran::make_byte_buffer();
TESTASSERT(nullptr != sdu);
sdu->msg[0] = 0; // Write the index into the buffer
sdu->N_bytes = payload_size; // Give the SDU the size of 3 bytes
sdu->md.pdcp_sn = 0; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu));
// Read 3 PDUs
constexpr uint16_t n_pdus = 3;
unique_byte_buffer_t pdu_bufs[n_pdus];
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
constexpr uint32_t so_size = 2;
constexpr uint32_t segment_size = 1;
uint32_t pdu_size_first = header_size + segment_size;
uint32_t pdu_size_continued = header_size + so_size + segment_size;
for (int i = 0; i < n_pdus; i++) {
pdu_bufs[i] = srsran::make_byte_buffer();
TESTASSERT(nullptr != pdu_bufs[i]);
if (i == 0) {
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, pdu_size_first);
TESTASSERT_EQ(pdu_size_first, pdu_bufs[i]->N_bytes);
} else {
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, pdu_size_continued);
TESTASSERT_EQ(pdu_size_continued, pdu_bufs[i]->N_bytes);
}
}
// Write 3 PDUs into RLC2
for (int i = 0; i < n_pdus; i++) {
rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
uint32_t total_rx_pdu_bytes = pdu_size_first + (n_pdus - 1) * pdu_size_continued; // 1 PDU (No SO) + 2 PDUs (with SO)
// SDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(1, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(payload_size, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_pdus);
TESTASSERT_EQ(n_pdus, metrics2.num_rx_pdus); // 3 PDUs
TESTASSERT_EQ(0, metrics2.num_tx_pdu_bytes);
TESTASSERT_EQ(total_rx_pdu_bytes, metrics2.num_rx_pdu_bytes); // 1 PDU (No SO) + 2 PDUs (with SO)
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
// Check state
rlc_am_nr_tx_state_t state1_tx = tx1->get_tx_state();
TESTASSERT_EQ(1, state1_tx.tx_next);
return SRSRAN_SUCCESS;
}
int segment_retx_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("segment retx PDU (%d bit SN)", to_number(sn_size));
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
// after configuring entity
TESTASSERT_EQ(0, rlc1.get_buffer_state());
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
constexpr uint32_t payload_size = 3; // Give the SDU the size of 3 bytes
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = payload_size; // Give each buffer a size of 3 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
uint32_t expected_buffer_state = (header_size + payload_size) * NBUFS;
TESTASSERT_EQ(expected_buffer_state, rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
for (int i = 0; i < NBUFS; i++) {
uint32_t len = rlc1.read_pdu(pdu_bufs[i].msg, header_size + payload_size);
pdu_bufs[i].N_bytes = len;
TESTASSERT_EQ(header_size + payload_size, len);
}
TESTASSERT_EQ(0, rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
if (i != 3) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
}
}
// Only after t-reassembly has expired, will the status report include NACKs.
TESTASSERT_EQ(3, rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(3, status_check.ack_sn); // 3 is the next expected SN (i.e. the lost packet.)
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
// Step timers until reassambly timeout expires
for (int cnt = 0; cnt < 35; cnt++) {
timers.step_all();
}
// t-reassembly has expired. There should be a NACK in the status report.
constexpr uint32_t status_pdu_ack_size = 3;
uint32_t status_pdu_nack_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
TESTASSERT_EQ(status_pdu_ack_size + status_pdu_nack_size, rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, status_pdu_ack_size + status_pdu_nack_size);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
TESTASSERT_EQ(1, status_check.N_nack); // We lost one PDU.
TESTASSERT_EQ(3, status_check.nacks[0].nack_sn); // Lost PDU SN=3.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3
TESTASSERT_EQ(header_size + payload_size, rlc1.get_buffer_state());
}
constexpr uint32_t so_size = 2;
constexpr uint32_t segment_size = 1;
uint32_t pdu_size_first = header_size + segment_size;
uint32_t pdu_size_continued = header_size + so_size + segment_size;
{
// Re-transmit PDU in 3 segments
for (int i = 0; i < 3; i++) {
byte_buffer_t retx_buf;
uint32_t len = 0;
if (i == 0) {
len = rlc1.read_pdu(retx_buf.msg, pdu_size_first);
TESTASSERT_EQ(pdu_size_first, len);
} else {
len = rlc1.read_pdu(retx_buf.msg, pdu_size_continued);
TESTASSERT_EQ(pdu_size_continued, len);
}
retx_buf.N_bytes = len;
rlc_am_nr_pdu_header_t header_check = {};
uint32_t hdr_len = rlc_am_nr_read_data_pdu_header(&retx_buf, sn_size, &header_check);
// Double check header.
TESTASSERT_EQ(3, header_check.sn); // Double check RETX SN
if (i == 0) {
TESTASSERT_EQ(rlc_nr_si_field_t::first_segment, header_check.si);
} else if (i == 1) {
TESTASSERT_EQ(rlc_nr_si_field_t::neither_first_nor_last_segment, header_check.si);
} else {
TESTASSERT_EQ(rlc_nr_si_field_t::last_segment, header_check.si);
}
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
}
TESTASSERT(0 == rlc1.get_buffer_state());
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
uint32_t data_pdu_size = header_size + payload_size;
uint32_t total_tx_pdu_bytes1 = NBUFS * data_pdu_size + pdu_size_first + 2 * pdu_size_continued;
uint32_t total_rx_pdu_bytes1 = 2 * status_pdu_ack_size + status_pdu_nack_size; // Two status PDU (one with a NACK)
uint32_t total_tx_pdu_bytes2 = total_rx_pdu_bytes1;
uint32_t total_rx_pdu_bytes2 = (NBUFS - 1) * data_pdu_size + pdu_size_first + 2 * pdu_size_continued;
// SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(15, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(5 + 3, metrics1.num_tx_pdus); // 3 re-transmissions
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
TESTASSERT_EQ(total_tx_pdu_bytes1, metrics1.num_tx_pdu_bytes);
TESTASSERT_EQ(total_rx_pdu_bytes1, metrics1.num_rx_pdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(15, metrics2.num_rx_sdu_bytes); // 5 SDUs, 3 bytes each
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// SDU metrics
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
TESTASSERT_EQ(7, metrics2.num_rx_pdus); // 7 PDUs (8 tx'ed, but one was lost)
TESTASSERT_EQ(total_tx_pdu_bytes2, metrics2.num_tx_pdu_bytes);
TESTASSERT_EQ(total_rx_pdu_bytes2,
metrics2.num_rx_pdu_bytes); // 2 Bytes * (NBUFFS-1) (header size) + (NBUFFS-1) * 3 (data)
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 33
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
// Check state
rlc_am_nr_rx_state_t state2_rx = rx2->get_rx_state();
TESTASSERT_EQ(5, state2_rx.rx_next);
return SRSRAN_SUCCESS;
}
int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("retx segment PDU (%d bit SN)", to_number(sn_size));
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return -1;
}
// after configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
int n_sdu_bufs = 5;
int n_pdu_bufs = 15;
// Push 5 SDUs into RLC1
std::vector<unique_byte_buffer_t> sdu_bufs(n_sdu_bufs);
for (int i = 0; i < n_sdu_bufs; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 3; // Give each buffer a size of 3 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(25 == rlc1.get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) = 25
// Read 15 PDUs from RLC1
std::vector<unique_byte_buffer_t> pdu_bufs(n_pdu_bufs);
for (int i = 0; i < n_pdu_bufs; i++) {
pdu_bufs[i] = srsran::make_byte_buffer();
if (i == 0 || i == 3 || i == 6 || i == 9 || i == 12) {
// First segment, no SO
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 3); // 2 bytes for header + 1 byte payload
pdu_bufs[i]->N_bytes = len;
TESTASSERT_EQ(3, len);
} else {
// Middle or last segment, SO present
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 5); // 4 bytes for header + 1 byte payload
pdu_bufs[i]->N_bytes = len;
TESTASSERT_EQ(5, len);
}
}
TESTASSERT_EQ(0, rlc1.get_buffer_state());
// Write 15 - 3 PDUs into RLC2
for (int i = 0; i < n_pdu_bufs; i++) {
if (i != 3 && i != 7 && i != 11) {
rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); // Lose first segment of RLC_SN=1.
}
}
// Only after t-reassembly has expired, will the status report include NACKs.
TESTASSERT_EQ(3, rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(1, status_check.ack_sn); // 1 is the next expected SN (i.e. the first lost packet.)
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
// Step timers until reassambly timeout expires
for (int cnt = 0; cnt < 35; cnt++) {
timers.step_all();
}
// t-reassembly has expired. There should be a NACK in the status report.
// There should be 3 NACKs with SO_start and SO_end
TESTASSERT_EQ(21, rlc2.get_buffer_state()); // 3 bytes for fixed header (ACK+E1) + 3 * 6 for NACK with SO = 21.
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 21);
status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, sn_size, &status_check);
TESTASSERT_EQ(5, status_check.ack_sn); // 5 is the next expected SN.
TESTASSERT_EQ(3, status_check.N_nack); // We lost one PDU.
TESTASSERT_EQ(1, status_check.nacks[0].nack_sn); // Lost SDU on SN=1.
TESTASSERT_EQ(true, status_check.nacks[0].has_so); // Lost SDU on SN=1.
TESTASSERT_EQ(0, status_check.nacks[0].so_start); // Lost SDU on SN=1.
TESTASSERT_EQ(0, status_check.nacks[0].so_end); // Lost SDU on SN=1.
TESTASSERT_EQ(2, status_check.nacks[1].nack_sn); // Lost SDU on SN=1.
TESTASSERT_EQ(true, status_check.nacks[1].has_so); // Lost SDU on SN=1.
TESTASSERT_EQ(1, status_check.nacks[1].so_start); // Lost SDU on SN=1.
TESTASSERT_EQ(1, status_check.nacks[1].so_end); // Lost SDU on SN=1.
TESTASSERT_EQ(3, status_check.nacks[2].nack_sn); // Lost SDU on SN=1.
TESTASSERT_EQ(true, status_check.nacks[2].has_so); // Lost SDU on SN=1.
TESTASSERT_EQ(2, status_check.nacks[2].so_start); // Lost SDU on SN=1.
TESTASSERT_EQ(0xFFFF, status_check.nacks[2].so_end); // Lost SDU on SN=1.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3
TESTASSERT_EQ(5, rlc1.get_buffer_state());
}
{
// Re-transmit the 3 lost segments
for (int i = 0; i < 3; i++) {
byte_buffer_t retx_buf;
uint32_t len = 0;
if (i == 0) {
len = rlc1.read_pdu(retx_buf.msg, 3);
TESTASSERT_EQ(3, len);
} else {
len = rlc1.read_pdu(retx_buf.msg, 5);
TESTASSERT_EQ(5, len);
}
retx_buf.N_bytes = len;
rlc_am_nr_pdu_header_t header_check = {};
uint32_t hdr_len = rlc_am_nr_read_data_pdu_header(&retx_buf, sn_size, &header_check);
// Double check header.
if (i == 0) {
TESTASSERT_EQ(1, header_check.sn); // Double check RETX SN
TESTASSERT_EQ(rlc_nr_si_field_t::first_segment, header_check.si);
} else if (i == 1) {
TESTASSERT_EQ(2, header_check.sn); // Double check RETX SN
TESTASSERT_EQ(rlc_nr_si_field_t::neither_first_nor_last_segment, header_check.si);
} else {
TESTASSERT_EQ(3, header_check.sn); // Double check RETX SN
TESTASSERT_EQ(rlc_nr_si_field_t::last_segment, header_check.si);
}
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
}
TESTASSERT_EQ(0, rlc1.get_buffer_state());
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
// SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(15, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(15 + 3, metrics1.num_tx_pdus); // 15 PDUs + 3 re-transmissions
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
TESTASSERT_EQ(78, metrics1.num_tx_pdu_bytes); // 3 Bytes * 5 (5 PDUs without SO) + 10 * 5 (10 PDUs with SO)
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 78
TESTASSERT_EQ(24, metrics1.num_rx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
// Another with 3 NACKs all with SO. (3 + 3*6 bytes)
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(15, metrics2.num_rx_sdu_bytes); // 5 SDUs, 3 bytes each
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// SDU metrics
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
TESTASSERT_EQ(15, metrics2.num_rx_pdus); // 15 PDUs (18 tx'ed, but three were lost)
TESTASSERT_EQ(24, metrics2.num_tx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
// Another with 3 NACKs all with SO. (3 + 3*6 bytes)
TESTASSERT_EQ(65, metrics2.num_rx_pdu_bytes); // 3 Bytes (header + data size, without SO) * 5 (N PDUs without SO)
// 5 bytes (header + data size, with SO) * 10 (N PDUs with SO)
// = 81 bytes
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
// Check state
rlc_am_nr_rx_state_t state2_rx = rx2->get_rx_state();
TESTASSERT_EQ(5, state2_rx.rx_next);
return SRSRAN_SUCCESS;
}
// This test checks whether RLC informs upper layer when max retransmission has been reached
// due to lost SDUs as a whole
int max_retx_lost_sdu_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
test_delimit_logger delimiter("max retx lost SDU (%d bit SN)", to_number(sn_size));
const rlc_config_t rlc_cfg = rlc_config_t::default_rlc_am_nr_config(to_number(sn_size));
if (not rlc1.configure(rlc_cfg)) {
return SRSRAN_ERROR;
}
// Push 2 SDUs into RLC1
const uint32_t n_sdus = 2;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 2 PDUs from RLC1 (1 byte each)
const uint32_t n_pdus = 2;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Fake status PDU that ack SN=1 and nack SN=0
rlc_am_nr_status_pdu_t fake_status = {};
fake_status.ack_sn = 2; // delivered up to SN=1
fake_status.N_nack = 1; // one SN was lost
fake_status.nacks[0].nack_sn = 0; // it was SN=0 that was lost
// pack into PDU
byte_buffer_t status_pdu;
rlc_am_nr_write_status_pdu(fake_status, rlc_cfg.am_nr.tx_sn_field_length, &status_pdu);
// Exceed the number of tolerated retransmissions by one additional retransmission
// to trigger notification of the higher protocol layers. Note that the initial transmission
// (before starting retransmissions) does not count. See TS 38.322 Sec. 5.3.2
for (uint32_t retx_count = 0; retx_count < rlc_cfg.am_nr.max_retx_thresh + 1; ++retx_count) {
// we've not yet reached max attempts
TESTASSERT(tester.max_retx_triggered == false);
// Write status PDU to RLC1
rlc1.write_pdu(status_pdu.msg, status_pdu.N_bytes);
byte_buffer_t pdu_buf;
len = rlc1.read_pdu(pdu_buf.msg, 3); // 2 byte header + 1 byte payload
}
// Now maxRetx should have been triggered
TESTASSERT(tester.max_retx_triggered == true);
return SRSRAN_SUCCESS;
}
// This test checks whether RLC informs upper layer when max retransmission has been reached
// due to lost SDU segments
int max_retx_lost_segments_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
test_delimit_logger delimiter("max retx lost SDU segment (%d bit SN)", to_number(sn_size));
const rlc_config_t rlc_cfg = rlc_config_t::default_rlc_am_nr_config(to_number(sn_size));
if (not rlc1.configure(rlc_cfg)) {
return SRSRAN_ERROR;
}
// Push 2 SDUs into RLC1
const uint32_t n_sdus = 2;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 20; // Give each buffer a size of 20 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 2*2=4 PDUs from RLC1 and limit to 15 byte to force segmentation in two parts:
// Segment 1: 2 byte header + 13 byte payload; space fully used
// Segment 2: 4 byte header + 7 byte payload; space not fully used, 4 bytes left over
const uint32_t n_pdus = 4;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 15);
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Fake status PDU that ack SN=1 and nack {SN=0 segment 0, SN=0 segment 1}
rlc_am_nr_status_pdu_t status_lost_both_segments = {};
status_lost_both_segments.ack_sn = 2; // delivered up to SN=1
status_lost_both_segments.N_nack = 2; // two segments lost
status_lost_both_segments.nacks[0].nack_sn = 0; // it was SN=0 that was lost
status_lost_both_segments.nacks[0].has_so = true; // this NACKs a segment
status_lost_both_segments.nacks[0].so_start = 0; // segment starts at (and includes) byte 0
status_lost_both_segments.nacks[0].so_end = 12; // segment ends at (and includes) byte 12
status_lost_both_segments.nacks[1].nack_sn = 0; // it was SN=0 that was lost
status_lost_both_segments.nacks[1].has_so = true; // this NACKs a segment
status_lost_both_segments.nacks[1].so_start = 13; // segment starts at (and includes) byte 13
status_lost_both_segments.nacks[1].so_end = 19; // segment ends at (and includes) byte 19
// pack into PDU
byte_buffer_t status_pdu_lost_both_segments;
rlc_am_nr_write_status_pdu(
status_lost_both_segments, rlc_cfg.am_nr.tx_sn_field_length, &status_pdu_lost_both_segments);
// Fake status PDU that ack SN=1 and nack {SN=0 segment 2}
rlc_am_nr_status_pdu_t status_lost_second_segment = {};
status_lost_second_segment.ack_sn = 2; // delivered up to SN=1
status_lost_second_segment.N_nack = 1; // one SN was lost
status_lost_second_segment.nacks[0].nack_sn = 0; // it was SN=0 that was lost
status_lost_second_segment.nacks[0].has_so = true; // this NACKs a segment
status_lost_second_segment.nacks[0].so_start = 13; // segment starts at (and includes) byte 13
status_lost_second_segment.nacks[0].so_end = 19; // segment ends at (and includes) byte 19
// pack into PDU
byte_buffer_t status_pdu_lost_second_segment;
rlc_am_nr_write_status_pdu(
status_lost_second_segment, rlc_cfg.am_nr.tx_sn_field_length, &status_pdu_lost_second_segment);
// Exceed the number of tolerated retransmissions by one additional retransmission
// to trigger notification of the higher protocol layers. Note that the initial transmission
// (before starting retransmissions) does not count. See TS 38.322 Sec. 5.3.2
for (uint32_t retx_count = 0; retx_count < rlc_cfg.am_nr.max_retx_thresh + 1; ++retx_count) {
byte_buffer_t pdu_buf;
// we've not yet reached max attempts
TESTASSERT(tester.max_retx_triggered == false);
if (retx_count < rlc_cfg.am_nr.max_retx_thresh / 2) {
// Send NACK for segment 1 and segment 2
// Although two segments, this must count as one retransmission,
// because both segments NACK the same SDU in the same status message.
rlc1.write_pdu(status_pdu_lost_both_segments.msg, status_pdu_lost_both_segments.N_bytes);
// read the retransmitted PDUs
len = rlc1.read_pdu(pdu_buf.msg, 15); // 2 byte header + 13 byte payload
len = rlc1.read_pdu(pdu_buf.msg, 15); // 4 byte header + 7 byte payload
} else {
// Send NACK for segment 2 (assume at least segment 1 was finally received)
rlc1.write_pdu(status_pdu_lost_second_segment.msg, status_pdu_lost_second_segment.N_bytes);
// read the retransmitted PDUs
len = rlc1.read_pdu(pdu_buf.msg, 15); // 4 byte header + 7 byte payload
}
}
// Now maxRetx should have been triggered
TESTASSERT(tester.max_retx_triggered == true);
return SRSRAN_SUCCESS;
}
// This test checks the correct functioning of RLC discard functionality
int discard_test(rlc_am_nr_sn_size_t sn_size)
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("discard test (%d bit SN)", to_number(sn_size));
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC_AM_2").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return SRSRAN_ERROR;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config(to_number(sn_size)))) {
return SRSRAN_ERROR;
}
// Test discarding the single SDU from the queue
{
uint32_t num_tx_sdus = 1;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 5;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
rlc1.discard_sdu(0); // Try to discard PDCP_SN=0
TESTASSERT(rlc1.has_data() == false);
// Test discarding two SDUs in the middle (SN=3) and end (SN=9) of the queue and read PDUs after
{
uint32_t num_tx_sdus = 10;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 7;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
TESTASSERT(rlc1.get_buffer_state() == 90); // 10 * (2B Header + 7B Payload)
rlc1.discard_sdu(3); // Try to discard PDCP_SN=3
TESTASSERT(rlc1.has_data() == true);
TESTASSERT(rlc1.get_buffer_state() == 81);
rlc1.discard_sdu(9); // Try to discard PDCP_SN=9
TESTASSERT(rlc1.has_data() == true);
TESTASSERT(rlc1.get_buffer_state() == 72);
{
uint32_t num_tx_sdus = 8;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
uint32_t len = rlc1.read_pdu(pdu->msg, 50); // sufficient space to read without segmentation
pdu->N_bytes = len;
TESTASSERT((2 + 7) == len);
// Check that we don't have any SN gaps
rlc_am_nr_pdu_header_t header = {};
rlc_am_nr_read_data_pdu_header(pdu.get(), sn_size, &header);
TESTASSERT(header.sn == i);
}
}
TESTASSERT(rlc1.has_data() == false);
srslog::fetch_basic_logger("TEST").info("Received %zd SDUs", tester.sdus.size());
// Test discarding non-existing SDU from the queue
{
uint32_t num_tx_sdus = 3;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 7;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
TESTASSERT(rlc1.get_buffer_state() == 27); // 3 * (2B Header + 7B Payload)
rlc1.discard_sdu(8); // Try to discard PDCP_SN=8, which doesn't exist
TESTASSERT(rlc1.get_buffer_state() == 27); // 3 * (2B Header + 7B Payload)
return SRSRAN_SUCCESS;
}
// Test p bit set on new TX with PollPDU
int poll_pdu()
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("poll test pollPDU");
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
rlc_config_t rlc_cnfg = {};
rlc_cnfg.rat = srsran_rat_t::nr;
rlc_cnfg.rlc_mode = rlc_mode_t::am;
rlc_cnfg.am_nr.poll_pdu = 4;
rlc_cnfg.am_nr.poll_byte = 3000;
rlc_cnfg.am_nr.t_status_prohibit = 8;
rlc_cnfg.am_nr.max_retx_thresh = 8;
rlc_cnfg.am_nr.t_reassembly = 35;
// Test p bit set on new TX with PollPDU
{
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_cnfg)) {
return SRSRAN_ERROR;
}
// pollPDU == 4
uint32_t num_tx_sdus = 6;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 1;
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
uint32_t num_tx_pdus = 6;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 3);
rlc_am_nr_pdu_header_t hdr;
rlc_am_nr_read_data_pdu_header(pdu.get(), rlc_am_nr_sn_size_t::size18bits, &hdr);
if (i != 3 && i != 5) { // P bit set for PollPDU and for empty TX queue
TESTASSERT_EQ(0, hdr.p);
} else {
TESTASSERT_EQ(1, hdr.p);
}
}
}
return SRSRAN_SUCCESS;
}
// Test p bit set on new TX with PollBYTE
int poll_byte()
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("poll test pollBYTE");
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
rlc_config_t rlc_cnfg = {};
rlc_cnfg.rat = srsran_rat_t::nr;
rlc_cnfg.rlc_mode = rlc_mode_t::am;
rlc_cnfg.am_nr.poll_pdu = 4;
rlc_cnfg.am_nr.poll_byte = 3000;
rlc_cnfg.am_nr.t_status_prohibit = 8;
rlc_cnfg.am_nr.max_retx_thresh = 8;
rlc_cnfg.am_nr.t_reassembly = 35;
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_cnfg)) {
return SRSRAN_ERROR;
}
// pollByte == 3000
uint32_t num_tx_sdus = 4;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = i == 0 ? 2999 : 1;
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
uint32_t num_tx_pdus = num_tx_sdus;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
uint32_t nof_bytes = i == 0 ? 3001 : 3;
pdu->N_bytes = rlc1.read_pdu(pdu->msg, nof_bytes);
TESTASSERT_EQ(nof_bytes, pdu->N_bytes);
rlc_am_nr_pdu_header_t hdr;
rlc_am_nr_read_data_pdu_header(pdu.get(), rlc_am_nr_sn_size_t::size18bits, &hdr);
if (i != 1 && i != 3) {
TESTASSERT_EQ(0, hdr.p);
} else {
TESTASSERT_EQ(1, hdr.p);
}
}
return SRSRAN_SUCCESS;
}
// Test p bit set on RETXes that cause an empty retx queue.
int poll_retx()
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("poll test retx");
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
rlc_config_t rlc_cnfg = {};
rlc_cnfg.rat = srsran_rat_t::nr;
rlc_cnfg.rlc_mode = rlc_mode_t::am;
rlc_cnfg.am_nr.poll_pdu = 4;
rlc_cnfg.am_nr.poll_byte = 3000;
rlc_cnfg.am_nr.t_status_prohibit = 8;
rlc_cnfg.am_nr.max_retx_thresh = 8;
rlc_cnfg.am_nr.t_reassembly = 35;
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_cnfg)) {
return SRSRAN_ERROR;
}
// pollPDU == 4
{
uint32_t num_tx_sdus = 5;
for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 1;
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
{
// Read 3 PDUs and NACK the second one
uint32_t num_tx_pdus = 3;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 3);
rlc_am_nr_pdu_header_t hdr;
rlc_am_nr_read_data_pdu_header(pdu.get(), rlc_am_nr_sn_size_t::size12bits, &hdr);
TESTASSERT_EQ(0, hdr.p);
}
}
{
unique_byte_buffer_t status_pdu = srsran::make_byte_buffer();
TESTASSERT(status_pdu != nullptr);
rlc_am_nr_status_pdu_t status = {};
status.ack_sn = 2;
status.N_nack = 1;
status.nacks[0].nack_sn = 1; // SN=1 needs RETX
rlc_am_nr_write_status_pdu(status, rlc_cnfg.am_nr.tx_sn_field_length, status_pdu.get());
rlc1.write_pdu(status_pdu->msg, status_pdu->N_bytes);
}
{
// Read 2 PDUs,
uint32_t num_tx_pdus = 3;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 3);
TESTASSERT_EQ(3, pdu->N_bytes);
rlc_am_nr_pdu_header_t hdr;
rlc_am_nr_read_data_pdu_header(pdu.get(), rlc_am_nr_sn_size_t::size12bits, &hdr);
if (i == 0) {
TESTASSERT_EQ(0, hdr.p); // No poll since pollPDU is not incremented for RETX
TESTASSERT_EQ(1, hdr.sn);
} else {
TESTASSERT_EQ(1, hdr.p); // poll set because of pollPDU for SN=3 and empty buffer on SN=4
}
}
}
{
unique_byte_buffer_t status_pdu = srsran::make_byte_buffer();
TESTASSERT(status_pdu != nullptr);
rlc_am_nr_status_pdu_t status = {};
status.ack_sn = 4;
status.N_nack = 1;
status.nacks[0].nack_sn = 1; // SN=1 needs RETX
rlc_am_nr_write_status_pdu(status, rlc_cnfg.am_nr.tx_sn_field_length, status_pdu.get());
rlc1.write_pdu(status_pdu->msg, status_pdu->N_bytes);
}
{
// Read 1 RETX PDU. Empty retx buffer, so poll should be set
uint32_t num_tx_pdus = 1;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 3);
TESTASSERT_EQ(3, pdu->N_bytes);
rlc_am_nr_pdu_header_t hdr;
rlc_am_nr_read_data_pdu_header(pdu.get(), rlc_am_nr_sn_size_t::size12bits, &hdr);
if (i == 0) {
TESTASSERT_EQ(1, hdr.p); // Poll set because of empty retx buffer
TESTASSERT_EQ(1, hdr.sn);
}
}
}
return SRSRAN_SUCCESS;
}
int main()
{
// Setup the log message spy to intercept error and warning log entries from RLC
if (!srslog::install_custom_sink(srsran::log_sink_message_spy::name(),
std::unique_ptr<srsran::log_sink_message_spy>(
new srsran::log_sink_message_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
auto* spy = static_cast<srsran::log_sink_message_spy*>(srslog::find_sink(srsran::log_sink_message_spy::name()));
if (spy == nullptr) {
return SRSRAN_ERROR;
}
srslog::set_default_sink(*spy);
auto& logger_rlc1 = srslog::fetch_basic_logger("RLC_AM_1", *spy, false);
auto& logger_rlc2 = srslog::fetch_basic_logger("RLC_AM_2", *spy, false);
logger_rlc1.set_hex_dump_max_size(100);
logger_rlc2.set_hex_dump_max_size(100);
logger_rlc1.set_level(srslog::basic_levels::debug);
logger_rlc2.set_level(srslog::basic_levels::debug);
// start log back-end
srslog::init();
std::initializer_list<rlc_am_nr_sn_size_t> sn_sizes = {rlc_am_nr_sn_size_t::size12bits,
rlc_am_nr_sn_size_t::size18bits};
for (auto sn_size : sn_sizes) {
TESTASSERT(window_checker_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(retx_segmentation_required_checker_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(basic_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(lost_pdu_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(basic_segmentation_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(segment_retx_test(sn_size) == SRSRAN_SUCCESS);
}
rlc_am_nr_sn_size_t sns = rlc_am_nr_sn_size_t::size12bits;
TESTASSERT(retx_segment_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(max_retx_lost_sdu_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(max_retx_lost_segments_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(discard_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(poll_pdu() == SRSRAN_SUCCESS);
TESTASSERT(poll_byte() == SRSRAN_SUCCESS);
TESTASSERT(poll_retx() == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}