|
|
|
%clear
|
|
|
|
% R.1 10 MHz 1 port
|
|
|
|
% R.10 10 MHz 2 ports
|
|
|
|
% R.4 1.4 MHz 1 port
|
|
|
|
% R.11-2 5 MHz 2 ports
|
|
|
|
rmc = lteRMCDL('R.10');
|
|
|
|
|
|
|
|
NofPortsTx=1;
|
|
|
|
|
|
|
|
SNR_values_db=1;%linspace(-8,-2,4);
|
|
|
|
Nrealizations=5;
|
|
|
|
enb = struct('NCellID',1,'NDLRB',25,'CellRefP',NofPortsTx,'CyclicPrefix','Normal','DuplexMode','FDD','NSubframe',0);
|
|
|
|
|
|
|
|
griddims = lteResourceGridSize(enb); % Resource grid dimensions
|
|
|
|
L = griddims(2);
|
|
|
|
|
|
|
|
cfg.Seed = 8; % Random channel seed
|
|
|
|
cfg.NRxAnts = 1; % 1 receive antenna
|
|
|
|
cfg.DelayProfile = 'EPA'; % EVA delay spread
|
|
|
|
cfg.DopplerFreq = 5; % 120Hz Doppler frequency
|
|
|
|
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
|
|
|
|
cfg.InitTime = 0; % Initialize at time zero
|
|
|
|
cfg.NTerms = 16; % Oscillators used in fading model
|
|
|
|
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
|
|
|
|
cfg.InitPhase = 'Random'; % Random initial phases
|
|
|
|
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
|
|
|
|
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
|
|
|
|
|
|
|
cec.PilotAverage = 'UserDefined'; % Type of pilot averaging
|
|
|
|
cec.FreqWindow = 9; % Frequency window size
|
|
|
|
cec.TimeWindow = 9; % Time window size
|
|
|
|
cec.InterpType = 'linear'; % 2D interpolation type
|
|
|
|
cec.InterpWindow = 'Centered'; % Interpolation window type
|
|
|
|
cec.InterpWinSize = 1; % Interpolation window size
|
|
|
|
|
|
|
|
rmc.PDSCH.Modulation = '16QAM';
|
|
|
|
[waveform,rgrid,info] = lteRMCDLTool(rmc,[1;0;0;1]);
|
|
|
|
|
|
|
|
cfg.SamplingRate = info.SamplingRate;
|
|
|
|
|
|
|
|
addpath('../../debug/lte/phy/lib/phch/test')
|
|
|
|
|
|
|
|
|
|
|
|
error=zeros(length(SNR_values_db),2);
|
|
|
|
for snr_idx=1:length(SNR_values_db)
|
|
|
|
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
|
|
|
SNR = 10^(SNRdB/20); % Linear SNR
|
|
|
|
|
|
|
|
errorReal = zeros(Nrealizations,2);
|
|
|
|
for i=1:Nrealizations
|
|
|
|
|
|
|
|
rxWaveform = lteFadingChannel(cfg,sum(waveform,2));
|
|
|
|
|
|
|
|
%% Additive Noise
|
|
|
|
N0 = 1/(sqrt(2.0*double(enb.CellRefP)*double(info.Nfft))*SNR);
|
|
|
|
|
|
|
|
% Create additive white Gaussian noise
|
|
|
|
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
|
|
|
|
|
|
|
|
rxWaveform = noise + rxWaveform;
|
|
|
|
|
|
|
|
rxWaveform = x((i-1)*76800+1:i*76800);
|
|
|
|
|
|
|
|
% Number of OFDM symbols in a subframe
|
|
|
|
% OFDM demodulate signal
|
|
|
|
rxgrid = lteOFDMDemodulate(enb, rxWaveform);
|
|
|
|
|
|
|
|
% Perform channel estimation
|
|
|
|
[hest, nest] = lteDLChannelEstimate(enb, cec, rxgrid(:,1:L,:));
|
|
|
|
|
|
|
|
pbchIndices = ltePBCHIndices(enb);
|
|
|
|
[pbchRx, pbchHest] = lteExtractResources( ...
|
|
|
|
pbchIndices, rxgrid(:,1:L,:), hest(:,1:L,:,:));
|
|
|
|
|
|
|
|
% Decode PBCH
|
|
|
|
[bchBits, pbchSymbols, nfmod4, mib, nof_ports] = ltePBCHDecode(enb, pbchRx, pbchHest, nest);
|
|
|
|
|
|
|
|
if (nof_ports ~= NofPortsTx)
|
|
|
|
errorReal(i,1)=1;
|
|
|
|
end
|
|
|
|
|
|
|
|
[nof_ports2, pbchSymbols2, pbchBits, ce, ce2, pbchRx2, pbchHest2]= liblte_pbch(enb, rxWaveform, hest, nest);
|
|
|
|
if (nof_ports2 ~= NofPortsTx)
|
|
|
|
errorReal(i,2)=1;
|
|
|
|
end
|
|
|
|
% if (errorReal(i,1) ~= errorReal(i,2))
|
|
|
|
% i=1;
|
|
|
|
% end
|
|
|
|
end
|
|
|
|
error(snr_idx,:) = sum(errorReal);
|
|
|
|
fprintf('SNR: %.2f dB\n', SNR_values_db(snr_idx));
|
|
|
|
end
|
|
|
|
|
|
|
|
if (length(SNR_values_db) > 1)
|
|
|
|
semilogy(SNR_values_db, error/Nrealizations)
|
|
|
|
grid on
|
|
|
|
xlabel('SNR (dB)');
|
|
|
|
ylabel('BLER')
|
|
|
|
legend('Matlab','libLTE')
|
|
|
|
axis([min(SNR_values_db) max(SNR_values_db) 1/Nrealizations/10 1])
|
|
|
|
else
|
|
|
|
disp(error)
|
|
|
|
end
|
|
|
|
|