You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

260 lines
7.6 KiB
C

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_BUFFER_POOL_H
#define SRSRAN_BUFFER_POOL_H
#include "byte_buffer.h"
#include "srsran/adt/bounded_vector.h"
#include <algorithm>
#include <map>
#include <pthread.h>
#include <stack>
#include <string>
#include <vector>
#include "srsran/adt/pool/fixed_size_pool.h"
#include "srsran/common/common.h"
#include "srsran/srslog/srslog.h"
namespace srsran {
/******************************************************************************
* Buffer pool
*
* Preallocates a large number of buffer_t and provides allocate and
* deallocate functions. Provides quick object creation and deletion as well
* as object reuse.
* Singleton class of byte_buffer_t (but other pools of different type can be created)
*****************************************************************************/
template <class buffer_t>
class buffer_pool
{
public:
// non-static methods
buffer_pool(int capacity_ = -1)
{
uint32_t nof_buffers = POOL_SIZE;
if (capacity_ > 0) {
nof_buffers = (uint32_t)capacity_;
}
pool.reserve(nof_buffers);
free_list.reserve(nof_buffers);
pthread_mutex_init(&mutex, nullptr);
pthread_cond_init(&cv_not_empty, nullptr);
for (uint32_t i = 0; i < nof_buffers; i++) {
buffer_t* b = new (std::nothrow) buffer_t;
if (!b) {
perror("Error allocating memory. Exiting...\n");
exit(-1);
}
pool.push_back(b);
free_list.push_back(b);
}
capacity = nof_buffers;
}
~buffer_pool()
{
for (auto* p : pool) {
delete p;
}
pthread_cond_destroy(&cv_not_empty);
pthread_mutex_destroy(&mutex);
}
void print_all_buffers()
{
printf("%d buffers in queue\n", static_cast<int>(pool.size() - free_list.size()));
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
std::map<std::string, uint32_t> buffer_cnt;
for (uint32_t i = 0; i < pool.size(); i++) {
if (std::find(free_list.cbegin(), free_list.cend(), pool[i]) == free_list.cend()) {
buffer_cnt[strlen(pool[i]->debug_name) ? pool[i]->debug_name : "Undefined"]++;
}
}
std::map<std::string, uint32_t>::iterator it;
for (it = buffer_cnt.begin(); it != buffer_cnt.end(); it++) {
printf(" - %dx %s\n", it->second, it->first.c_str());
}
#endif
}
uint32_t nof_available_pdus() { return free_list.size(); }
bool is_almost_empty() { return free_list.size() < capacity / 20; }
buffer_t* allocate(const char* debug_name = nullptr, bool blocking = false)
{
pthread_mutex_lock(&mutex);
buffer_t* b = nullptr;
if (!free_list.empty()) {
b = free_list.back();
free_list.pop_back();
if (is_almost_empty()) {
printf("Warning buffer pool capacity is %f %%\n", (float)100 * free_list.size() / capacity);
}
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
if (debug_name) {
strncpy(b->debug_name, debug_name, SRSRAN_BUFFER_POOL_LOG_NAME_LEN);
b->debug_name[SRSRAN_BUFFER_POOL_LOG_NAME_LEN - 1] = 0;
}
#endif
} else if (blocking) {
// blocking allocation
while (free_list.empty()) {
pthread_cond_wait(&cv_not_empty, &mutex);
}
// retrieve the new buffer
b = free_list.back();
free_list.pop_back();
// do not print any warning
} else {
printf("Error - buffer pool is empty\n");
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
print_all_buffers();
#endif
}
pthread_mutex_unlock(&mutex);
return b;
}
bool deallocate(buffer_t* b)
{
bool ret = false;
pthread_mutex_lock(&mutex);
if (std::find(pool.cbegin(), pool.cend(), b) != pool.cend()) {
free_list.push_back(b);
ret = true;
}
pthread_cond_signal(&cv_not_empty);
pthread_mutex_unlock(&mutex);
return ret;
}
private:
static const int POOL_SIZE = 4096;
std::vector<buffer_t*> pool;
std::vector<buffer_t*> free_list;
pthread_mutex_t mutex;
pthread_cond_t cv_not_empty;
uint32_t capacity;
};
using byte_buffer_pool = concurrent_fixed_memory_pool<sizeof(byte_buffer_t)>;
inline unique_byte_buffer_t make_byte_buffer() noexcept
{
return std::unique_ptr<byte_buffer_t>(new (std::nothrow) byte_buffer_t());
}
inline unique_byte_buffer_t make_byte_buffer(uint32_t size, uint8_t value) noexcept
{
return std::unique_ptr<byte_buffer_t>(new (std::nothrow) byte_buffer_t(size, value));
}
inline unique_byte_buffer_t make_byte_buffer(const char* debug_ctxt) noexcept
{
std::unique_ptr<byte_buffer_t> buffer(new (std::nothrow) byte_buffer_t());
if (buffer == nullptr) {
srslog::fetch_basic_logger("POOL").error("Failed to allocate byte buffer in %s", debug_ctxt);
}
return buffer;
}
inline unique_byte_buffer_t make_byte_buffer(const uint8_t* payload, uint32_t len, const char* debug_ctxt) noexcept
{
std::unique_ptr<byte_buffer_t> buffer(new (std::nothrow) byte_buffer_t());
if (buffer == nullptr) {
srslog::fetch_basic_logger("POOL").error("Failed to allocate byte buffer in %s", debug_ctxt);
} else {
if (buffer->get_tailroom() >= len) {
memcpy(buffer->msg, payload, len);
buffer->N_bytes = len;
} else {
srslog::fetch_basic_logger("POOL").error(
"Failed to create byte buffer in %s. Payload too large (%d > %d)", debug_ctxt, len, buffer->get_tailroom());
}
}
return buffer;
}
namespace detail {
struct byte_buffer_pool_deleter {
void operator()(void* ptr) { byte_buffer_pool::get_instance()->deallocate_node(ptr); }
};
} // namespace detail
/**
* Class to wrap objects of type T which get allocated/deallocated using the byte_buffer_pool
* @tparam T type of the object being allocated
*/
template <typename T>
struct byte_buffer_pool_ptr {
static_assert(sizeof(T) <= byte_buffer_pool::BLOCK_SIZE, "pool_bounded_vector does not fit buffer pool block size");
public:
byte_buffer_pool_ptr() = default;
void reset() { ptr.reset(); }
T* operator->() { return ptr.get(); }
const T* operator->() const { return ptr.get(); }
T& operator*() { return *ptr; }
const T& operator*() const { return *ptr; }
bool has_value() const { return ptr.get() != nullptr; }
template <typename... CtorArgs>
void emplace(CtorArgs&&... args)
{
ptr.reset(make(std::forward<CtorArgs>(args)...).ptr.release());
}
template <typename... CtorArgs>
static byte_buffer_pool_ptr<T> make(CtorArgs&&... args)
{
void* memblock = byte_buffer_pool::get_instance()->allocate_node(sizeof(T));
if (memblock == nullptr) {
return byte_buffer_pool_ptr<T>();
}
new (memblock) T(std::forward<CtorArgs>(args)...);
byte_buffer_pool_ptr<T> ret;
ret.ptr = std::unique_ptr<T, detail::byte_buffer_pool_deleter>(static_cast<T*>(memblock),
detail::byte_buffer_pool_deleter());
return ret;
};
private:
std::unique_ptr<T, detail::byte_buffer_pool_deleter> ptr;
};
} // namespace srsran
#endif // SRSRAN_BUFFER_POOL_H