You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

942 lines
27 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include "prb.h"
#include "liblte/phy/phch/pdsch.h"
#include "liblte/phy/common/phy_common.h"
#include "liblte/phy/utils/bit.h"
#include "liblte/phy/utils/debug.h"
#include "liblte/phy/utils/vector.h"
#define MAX_PDSCH_RE(cp) (2 * CP_NSYMB(cp) * 12)
const lte_mod_t modulations[4] =
{ LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 };
//#define DEBUG_IDX
#ifdef DEBUG_IDX
cf_t *offset_original=NULL;
extern int indices[2048];
extern int indices_ptr;
#endif
int pdsch_cp(pdsch_t *q, cf_t *input, cf_t *output, ra_prb_t *prb_alloc,
uint32_t nsubframe, bool put) {
uint32_t s, n, l, lp, lstart, lend, nof_refs;
bool is_pbch, is_sss;
cf_t *in_ptr = input, *out_ptr = output;
uint32_t offset = 0;
INFO("%s %d RE from %d PRB\n", put ? "Putting" : "Getting",
prb_alloc->re_sf[nsubframe], prb_alloc->slot[0].nof_prb);
#ifdef DEBUG_IDX
indices_ptr = 0;
if (put) {
offset_original = output;
} else {
offset_original = input;
}
#endif
if (q->cell.nof_ports == 1) {
nof_refs = 2;
} else {
nof_refs = 4;
}
for (s = 0; s < 2; s++) {
for (l = 0; l < CP_NSYMB(q->cell.cp); l++) {
for (n = 0; n < q->cell.nof_prb; n++) {
// If this PRB is assigned
if (prb_alloc->slot[s].prb_idx[n]) {
if (s == 0) {
lstart = prb_alloc->lstart;
} else {
lstart = 0;
}
lend = CP_NSYMB(q->cell.cp);
is_pbch = is_sss = false;
// Skip PSS/SSS signals
if (s == 0 && (nsubframe == 0 || nsubframe == 5)) {
if (n >= q->cell.nof_prb / 2 - 3
&& n < q->cell.nof_prb / 2 + 3) {
lend = CP_NSYMB(q->cell.cp) - 2;
is_sss = true;
}
}
// Skip PBCH
if (s == 1 && nsubframe == 0) {
if (n >= q->cell.nof_prb / 2 - 3
&& n < q->cell.nof_prb / 2 + 3) {
lstart = 4;
is_pbch = true;
}
}
lp = l + s * CP_NSYMB(q->cell.cp);
if (put) {
out_ptr = &output[(lp * q->cell.nof_prb + n)
* RE_X_RB];
} else {
in_ptr = &input[(lp * q->cell.nof_prb + n)
* RE_X_RB];
}
// This is a symbol in a normal PRB with or without references
if (l >= lstart && l < lend) {
if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) {
if (nof_refs == 2 && l != 0) {
offset = q->cell.id % 3 + 3;
} else {
offset = q->cell.id % 3;
}
prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs, put);
} else {
prb_cp(&in_ptr, &out_ptr, 1);
}
}
// This is a symbol in a PRB with PBCH or Synch signals (SS).
// If the number or total PRB is odd, half of the the PBCH or SS will fall into the symbol
if ((q->cell.nof_prb % 2) && ((is_pbch && l < lstart) || (is_sss && l >= lend))) {
if (n == q->cell.nof_prb / 2 - 3) {
if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) {
prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put);
} else {
prb_cp_half(&in_ptr, &out_ptr, 1);
}
} else if (n == q->cell.nof_prb / 2 + 3) {
if (put) {
out_ptr += 6;
} else {
in_ptr += 6;
}
if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) {
prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put);
} else {
prb_cp_half(&in_ptr, &out_ptr, 1);
}
}
}
}
}
}
}
int r;
if (put) {
r = abs((int) (input - in_ptr));
} else {
r = abs((int) (output - out_ptr));
}
return r;
}
/**
* Puts PDSCH in slot number 1
*
* Returns the number of symbols written to sf_symbols
*
* 36.211 10.3 section 6.3.5
*/
int pdsch_put(pdsch_t *q, cf_t *pdsch_symbols, cf_t *sf_symbols,
ra_prb_t *prb_alloc, uint32_t subframe) {
return pdsch_cp(q, pdsch_symbols, sf_symbols, prb_alloc, subframe, true);
}
/**
* Extracts PDSCH from slot number 1
*
* Returns the number of symbols written to PDSCH
*
* 36.211 10.3 section 6.3.5
*/
int pdsch_get(pdsch_t *q, cf_t *sf_symbols, cf_t *pdsch_symbols,
ra_prb_t *prb_alloc, uint32_t subframe) {
return pdsch_cp(q, sf_symbols, pdsch_symbols, prb_alloc, subframe, false);
}
/** Initializes the PDCCH transmitter and receiver */
int pdsch_init(pdsch_t *q, lte_cell_t cell) {
int ret = LIBLTE_ERROR_INVALID_INPUTS;
int i;
if (q != NULL &&
lte_cell_isvalid(&cell))
{
bzero(q, sizeof(pdsch_t));
ret = LIBLTE_ERROR;
q->cell = cell;
q->max_symbols = q->cell.nof_prb * MAX_PDSCH_RE(q->cell.cp);
INFO("Init PDSCH: %d ports %d PRBs, max_symbols: %d\n", q->cell.nof_ports,
q->cell.nof_prb, q->max_symbols);
if (precoding_init(&q->precoding, SF_LEN_RE(cell.nof_prb, cell.cp))) {
fprintf(stderr, "Error initializing precoding\n");
goto clean;
}
for (i = 0; i < 4; i++) {
if (modem_table_lte(&q->mod[i], modulations[i], true)) {
goto clean;
}
}
if (crc_init(&q->crc_tb, LTE_CRC24A, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
if (crc_init(&q->crc_cb, LTE_CRC24B, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
demod_soft_init(&q->demod, q->max_symbols);
demod_soft_alg_set(&q->demod, APPROX);
q->rnti_is_set = false;
if (tcod_init(&q->encoder, MAX_LONG_CB)) {
fprintf(stderr, "Error initiating Turbo Coder\n");
goto clean;
}
if (tdec_init(&q->decoder, MAX_LONG_CB)) {
fprintf(stderr, "Error initiating Turbo Decoder\n");
goto clean;
}
// Allocate floats for reception (LLRs)
q->cb_in = malloc(sizeof(uint8_t) * MAX_LONG_CB);
if (!q->cb_in) {
goto clean;
}
q->cb_out = malloc(sizeof(float) * (3 * MAX_LONG_CB + 12));
if (!q->cb_out) {
goto clean;
}
// Allocate floats for reception (LLRs)
q->pdsch_e = malloc(sizeof(float) * q->max_symbols * lte_mod_bits_x_symbol(LTE_QAM64));
if (!q->pdsch_e) {
goto clean;
}
q->pdsch_d = malloc(sizeof(cf_t) * q->max_symbols);
if (!q->pdsch_d) {
goto clean;
}
for (i = 0; i < q->cell.nof_ports; i++) {
q->ce[i] = malloc(sizeof(cf_t) * q->max_symbols);
if (!q->ce[i]) {
goto clean;
}
q->pdsch_x[i] = malloc(sizeof(cf_t) * q->max_symbols);
if (!q->pdsch_x[i]) {
goto clean;
}
q->pdsch_symbols[i] = malloc(sizeof(cf_t) * q->max_symbols);
if (!q->pdsch_symbols[i]) {
goto clean;
}
}
ret = LIBLTE_SUCCESS;
}
clean:
if (ret == LIBLTE_ERROR) {
pdsch_free(q);
}
return ret;
}
void pdsch_free(pdsch_t *q) {
int i;
if (q->cb_in) {
free(q->cb_in);
}
if (q->cb_out) {
free(q->cb_out);
}
if (q->pdsch_e) {
free(q->pdsch_e);
}
if (q->pdsch_d) {
free(q->pdsch_d);
}
for (i = 0; i < q->cell.nof_ports; i++) {
if (q->ce[i]) {
free(q->ce[i]);
}
if (q->pdsch_x[i]) {
free(q->pdsch_x[i]);
}
if (q->pdsch_symbols[i]) {
free(q->pdsch_symbols[i]);
}
}
for (i = 0; i < NSUBFRAMES_X_FRAME; i++) {
sequence_free(&q->seq_pdsch[i]);
}
for (i = 0; i < 4; i++) {
modem_table_free(&q->mod[i]);
}
tdec_free(&q->decoder);
tcod_free(&q->encoder);
precoding_free(&q->precoding);
bzero(q, sizeof(pdsch_t));
}
int pdsch_set_rnti(pdsch_t *q, uint16_t rnti) {
uint32_t i;
for (i = 0; i < NSUBFRAMES_X_FRAME; i++) {
if (sequence_pdsch(&q->seq_pdsch[i], rnti, 0, 2 * i, q->cell.id,
q->max_symbols * lte_mod_bits_x_symbol(LTE_QAM64))) {
return LIBLTE_ERROR;
}
}
q->rnti_is_set = true;
q->rnti = rnti;
return LIBLTE_SUCCESS;
}
/* Calculate Codeblock Segmentation as in Section 5.1.2 of 36.212 */
static int codeblock_segmentation(struct cb_segm *s, uint32_t tbs) {
uint32_t Bp, B, idx1;
int ret;
B = tbs + 24;
/* Calculate CB sizes */
if (B < MAX_LONG_CB) {
s->C = 1;
Bp = B;
} else {
s->C = (uint32_t) ceilf((float) B / (MAX_LONG_CB - 24));
Bp = B + 24 * s->C;
}
ret = lte_find_cb_index(Bp / s->C);
if (ret != LIBLTE_ERROR) {
idx1 = (uint32_t) ret;
ret = lte_cb_size(idx1);
if (ret != LIBLTE_ERROR) {
s->K1 = (uint32_t) ret;
ret = lte_cb_size(idx1 - 1);
if (ret != LIBLTE_ERROR) {
if (s->C == 1) {
s->K2 = 0;
s->C2 = 0;
s->C1 = 1;
} else {
s->K2 = (uint32_t) ret;
s->C2 = (s->C * s->K1 - Bp) / (s->K1 - s->K2);
s->C1 = s->C - s->C2;
}
s->F = s->C1 * s->K1 + s->C2 * s->K2 - Bp;
INFO("CB Segmentation: TBS: %d, C=%d, C+=%d K+=%d, C-=%d, K-=%d, F=%d, Bp=%d\n",
tbs, s->C, s->C1, s->K1, s->C2, s->K2, s->F, Bp);
}
}
}
return ret;
}
int pdsch_harq_init(pdsch_harq_t *p, pdsch_t *pdsch) {
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (p != NULL) {
uint32_t i;
bzero(p, sizeof(pdsch_harq_t));
p->cell = pdsch->cell;
ret = ra_tbs_from_idx(26, p->cell.nof_prb);
if (ret != LIBLTE_ERROR) {
p->max_cb = (uint32_t) ret / (MAX_LONG_CB - 24) + 1;
p->pdsch_w_buff_f = malloc(sizeof(float*) * p->max_cb);
if (!p->pdsch_w_buff_f) {
perror("malloc");
return LIBLTE_ERROR;
}
p->pdsch_w_buff_c = malloc(sizeof(uint8_t*) * p->max_cb);
if (!p->pdsch_w_buff_c) {
perror("malloc");
return LIBLTE_ERROR;
}
// FIXME: Use HARQ buffer limitation based on UE category
p->w_buff_size = p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp) * 6 * 10;
for (i=0;i<p->max_cb;i++) {
p->pdsch_w_buff_f[i] = vec_malloc(sizeof(float) * p->w_buff_size);
if (!p->pdsch_w_buff_f[i]) {
perror("malloc");
return LIBLTE_ERROR;
}
p->pdsch_w_buff_c[i] = vec_malloc(sizeof(uint8_t) * p->w_buff_size);
if (!p->pdsch_w_buff_c[i]) {
perror("malloc");
return LIBLTE_ERROR;
}
}
ret = LIBLTE_SUCCESS;
}
}
return ret;
}
void pdsch_harq_free(pdsch_harq_t *p) {
if (p) {
uint32_t i;
if (p->pdsch_w_buff_f) {
for (i=0;i<p->max_cb;i++) {
if (p->pdsch_w_buff_f[i]) {
free(p->pdsch_w_buff_f[i]);
}
}
free(p->pdsch_w_buff_f);
}
if (p->pdsch_w_buff_c) {
for (i=0;i<p->max_cb;i++) {
if (p->pdsch_w_buff_c[i]) {
free(p->pdsch_w_buff_c[i]);
}
}
free(p->pdsch_w_buff_c);
}
bzero(p, sizeof(pdsch_harq_t));
}
}
void pdsch_harq_reset(pdsch_harq_t *p) {
int i;
if (p->pdsch_w_buff_f) {
for (i=0;i<p->max_cb;i++) {
if (p->pdsch_w_buff_f[i]) {
bzero(p->pdsch_w_buff_f[i], sizeof(float) * p->w_buff_size);
}
}
}
if (p->pdsch_w_buff_c) {
for (i=0;i<p->max_cb;i++) {
if (p->pdsch_w_buff_c[i]) {
bzero(p->pdsch_w_buff_c[i], sizeof(uint8_t) * p->w_buff_size);
}
}
}
bzero(&p->mcs, sizeof(ra_mcs_t));
bzero(&p->cb_segm, sizeof(struct cb_segm));
bzero(&p->prb_alloc, sizeof(ra_prb_t));
}
int pdsch_harq_setup(pdsch_harq_t *p, ra_mcs_t mcs, ra_prb_t *prb_alloc) {
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (p != NULL &&
mcs.tbs > 0)
{
uint32_t nof_bits, nof_bits_e, nof_symbols;
p->mcs = mcs;
memcpy(&p->prb_alloc, prb_alloc, sizeof(ra_prb_t));
codeblock_segmentation(&p->cb_segm, mcs.tbs);
nof_bits = mcs.tbs;
nof_symbols = prb_alloc->re_sf[1]; // Any subframe except 0 and 5 has maximum RE
nof_bits_e = nof_symbols * lte_mod_bits_x_symbol(mcs.mod);
if (nof_bits > nof_bits_e) {
fprintf(stderr, "Invalid code rate %.2f\n", (float) nof_bits / nof_bits_e);
return LIBLTE_ERROR;
}
if (nof_symbols > p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp)) {
fprintf(stderr,
"Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n",
nof_symbols, p->cell.nof_prb * MAX_PDSCH_RE(p->cell.cp), p->cell.nof_prb);
return LIBLTE_ERROR;
}
if (p->cb_segm.C > p->max_cb) {
fprintf(stderr, "Codeblock segmentation returned more CBs (%d) than allocated (%d)\n",
p->cb_segm.C, p->max_cb);
return LIBLTE_ERROR;
}
ret = LIBLTE_SUCCESS;
}
return ret;
}
float pdsch_average_noi(pdsch_t *q) {
return q->average_nof_iterations;
}
uint32_t pdsch_last_noi(pdsch_t *q) {
return q->nof_iterations;
}
/* Decode a transport block according to 36.212 5.3.2
*
*/
int pdsch_decode_tb(pdsch_t *q, uint8_t *data, uint32_t tbs, uint32_t nb_e,
pdsch_harq_t *harq_process, uint32_t rv_idx)
{
uint8_t parity[24];
uint8_t *p_parity = parity;
uint32_t par_rx, par_tx;
uint32_t i;
uint32_t cb_len, rp, wp, rlen, F, n_e;
float *e_bits = q->pdsch_e;
if (q != NULL &&
data != NULL &&
nb_e < q->max_symbols * lte_mod_bits_x_symbol(LTE_QAM64))
{
rp = 0;
rp = 0;
wp = 0;
for (i = 0; i < harq_process->cb_segm.C; i++) {
/* Get read/write lengths */
if (i < harq_process->cb_segm.C - harq_process->cb_segm.C2) {
cb_len = harq_process->cb_segm.K1;
} else {
cb_len = harq_process->cb_segm.K2;
}
if (harq_process->cb_segm.C == 1) {
rlen = cb_len;
} else {
rlen = cb_len - 24;
}
if (i == 0) {
F = harq_process->cb_segm.F;
} else {
F = 0;
}
if (i < harq_process->cb_segm.C - 1) {
n_e = nb_e / harq_process->cb_segm.C;
} else {
n_e = nb_e - rp;
}
DEBUG("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i,
cb_len, rlen - F, wp, rp, F, n_e);
/* Rate Unmatching */
if (rm_turbo_rx(harq_process->pdsch_w_buff_f[i], harq_process->w_buff_size,
&e_bits[rp], n_e,
(float*) q->cb_out, 3 * cb_len + 12, rv_idx)) {
fprintf(stderr, "Error in rate matching\n");
return LIBLTE_ERROR;
}
/* Turbo Decoding with CRC-based early stopping */
q->nof_iterations = 0;
bool early_stop = false;
uint32_t len_crc;
uint8_t *cb_in_ptr;
crc_t *crc_ptr;
tdec_reset(&q->decoder, cb_len);
do {
tdec_iteration(&q->decoder, (float*) q->cb_out, cb_len);
q->nof_iterations++;
if (harq_process->cb_segm.C > 1) {
len_crc = cb_len;
cb_in_ptr = q->cb_in;
crc_ptr = &q->crc_cb;
} else {
len_crc = tbs+24;
bzero(q->cb_in, F*sizeof(uint8_t));
cb_in_ptr = &q->cb_in[F];
crc_ptr = &q->crc_tb;
}
tdec_decision(&q->decoder, q->cb_in, cb_len);
/* Check Codeblock CRC and stop early if incorrect */
if (!crc_checksum(crc_ptr, cb_in_ptr, len_crc)) {
early_stop = true;
}
} while (q->nof_iterations < TDEC_MAX_ITERATIONS && !early_stop);
q->average_nof_iterations = VEC_EMA((float) q->nof_iterations, q->average_nof_iterations, 0.2);
/* Copy data to another buffer, removing the Codeblock CRC */
if (i < harq_process->cb_segm.C - 1) {
memcpy(&data[wp], &q->cb_in[F], (rlen - F) * sizeof(uint8_t));
} else {
DEBUG("Last CB, appending parity: %d to %d from %d and 24 from %d\n",
rlen - F - 24, wp, F, rlen - 24);
/* Append Transport Block parity bits to the last CB */
memcpy(&data[wp], &q->cb_in[F], (rlen - F - 24) * sizeof(uint8_t));
memcpy(parity, &q->cb_in[rlen - 24], 24 * sizeof(uint8_t));
}
/* Set read/write pointers */
wp += (rlen - F);
rp += n_e;
}
DEBUG("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
// Compute transport block CRC
par_rx = crc_checksum(&q->crc_tb, data, tbs);
// check parity bits
par_tx = bit_unpack(&p_parity, 24);
if (!par_rx) {
INFO("\n\tCAUTION!! Received all-zero transport block\n\n", 0);
}
if (par_rx == par_tx) {
INFO("TB decoded OK\n",i);
return LIBLTE_SUCCESS;
} else {
INFO("Error in TB parity\n",i);
return LIBLTE_ERROR;
}
} else {
return LIBLTE_ERROR_INVALID_INPUTS;
}
}
/** Decodes the PDSCH from the received symbols
*/
int pdsch_decode(pdsch_t *q, cf_t *sf_symbols, cf_t *ce[MAX_PORTS], float noise_estimate, uint8_t *data, uint32_t subframe,
pdsch_harq_t *harq_process, uint32_t rv_idx)
{
/* Set pointers for layermapping & precoding */
uint32_t i, n;
cf_t *x[MAX_LAYERS];
uint32_t nof_symbols, nof_bits, nof_bits_e;
if (q != NULL &&
sf_symbols != NULL &&
data != NULL &&
subframe < 10 &&
harq_process != NULL)
{
if (q->rnti_is_set) {
nof_bits = harq_process->mcs.tbs;
nof_symbols = harq_process->prb_alloc.re_sf[subframe];
nof_bits_e = nof_symbols * lte_mod_bits_x_symbol(harq_process->mcs.mod);
INFO("Decoding PDSCH SF: %d, Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n",
subframe, lte_mod_string(harq_process->mcs.mod), nof_bits, nof_symbols, nof_bits_e, rv_idx);
/* number of layers equals number of ports */
for (i = 0; i < q->cell.nof_ports; i++) {
x[i] = q->pdsch_x[i];
}
memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports));
/* extract symbols */
n = pdsch_get(q, sf_symbols, q->pdsch_symbols[0], &harq_process->prb_alloc, subframe);
if (n != nof_symbols) {
fprintf(stderr, "Error expecting %d symbols but got %d\n", nof_symbols, n);
return LIBLTE_ERROR;
}
/* extract channel estimates */
for (i = 0; i < q->cell.nof_ports; i++) {
n = pdsch_get(q, ce[i], q->ce[i], &harq_process->prb_alloc, subframe);
if (n != nof_symbols) {
fprintf(stderr, "Error expecting %d symbols but got %d\n", nof_symbols, n);
return LIBLTE_ERROR;
}
}
/* TODO: only diversity is supported */
if (q->cell.nof_ports == 1) {
/* no need for layer demapping */
predecoding_single(&q->precoding, q->pdsch_symbols[0], q->ce[0], q->pdsch_d,
nof_symbols, noise_estimate);
} else {
predecoding_diversity(&q->precoding, q->pdsch_symbols[0], q->ce, x, q->cell.nof_ports,
nof_symbols, noise_estimate);
layerdemap_diversity(x, q->pdsch_d, q->cell.nof_ports,
nof_symbols / q->cell.nof_ports);
}
/* demodulate symbols
* The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation,
* thus we don't need tot set it in the LLRs normalization
*/
demod_soft_sigma_set(&q->demod, sqrt(0.5));
demod_soft_table_set(&q->demod, &q->mod[harq_process->mcs.mod]);
demod_soft_demodulate(&q->demod, q->pdsch_d, q->pdsch_e, nof_symbols);
/* descramble */
scrambling_f_offset(&q->seq_pdsch[subframe], q->pdsch_e, 0, nof_bits_e);
return pdsch_decode_tb(q, data, nof_bits, nof_bits_e, harq_process, rv_idx);
} else {
fprintf(stderr, "Must call pdsch_set_rnti() before calling pdsch_decode()\n");
return LIBLTE_ERROR;
}
} else {
return LIBLTE_ERROR_INVALID_INPUTS;
}
}
/* Encode a transport block according to 36.212 5.3.2
*
*/
int pdsch_encode_tb(pdsch_t *q, uint8_t *data, uint32_t tbs, uint32_t nb_e,
pdsch_harq_t *harq_process, uint32_t rv_idx)
{
uint8_t parity[24];
uint8_t *p_parity = parity;
uint32_t par;
uint32_t i;
uint32_t cb_len, rp, wp, rlen, F, n_e;
uint8_t *e_bits = q->pdsch_e;
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
data != NULL &&
nb_e < q->max_symbols * lte_mod_bits_x_symbol(LTE_QAM64))
{
if (q->rnti_is_set) {
if (rv_idx == 0) {
/* Compute transport block CRC */
par = crc_checksum(&q->crc_tb, data, tbs);
/* parity bits will be appended later */
bit_pack(par, &p_parity, 24);
if (VERBOSE_ISDEBUG()) {
DEBUG("DATA: ", 0);
vec_fprint_b(stdout, data, tbs);
DEBUG("PARITY: ", 0);
vec_fprint_b(stdout, parity, 24);
}
/* Add filler bits to the new data buffer */
for (i = 0; i < harq_process->cb_segm.F; i++) {
q->cb_in[i] = LTE_NULL_BIT;
}
}
wp = 0;
rp = 0;
for (i = 0; i < harq_process->cb_segm.C; i++) {
/* Get read lengths */
if (i < harq_process->cb_segm.C - harq_process->cb_segm.C2) {
cb_len = harq_process->cb_segm.K1;
} else {
cb_len = harq_process->cb_segm.K2;
}
if (harq_process->cb_segm.C > 1) {
rlen = cb_len - 24;
} else {
rlen = cb_len;
}
if (i == 0) {
F = harq_process->cb_segm.F;
} else {
F = 0;
}
if (i < harq_process->cb_segm.C - 1) {
n_e = nb_e / harq_process->cb_segm.C;
} else {
n_e = nb_e - wp;
}
INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i,
cb_len, rlen - F, wp, rp, F, n_e);
if (rv_idx == 0) {
/* Copy data to another buffer, making space for the Codeblock CRC */
if (i < harq_process->cb_segm.C - 1) {
memcpy(&q->cb_in[F], &data[rp], (rlen - F) * sizeof(uint8_t));
} else {
INFO("Last CB, appending parity: %d from %d and 24 to %d\n",
rlen - F - 24, rp, rlen - 24);
/* Append Transport Block parity bits to the last CB */
memcpy(&q->cb_in[F], &data[rp], (rlen - F - 24) * sizeof(uint8_t));
memcpy(&q->cb_in[rlen - 24], parity, 24 * sizeof(uint8_t));
}
if (harq_process->cb_segm.C > 1) {
/* Attach Codeblock CRC */
crc_attach(&q->crc_cb, q->cb_in, rlen);
}
if (VERBOSE_ISDEBUG()) {
DEBUG("CB#%d Len=%d: ", i, cb_len);
vec_fprint_b(stdout, q->cb_in, cb_len);
}
/* Turbo Encoding */
tcod_encode(&q->encoder, q->cb_in, (uint8_t*) q->cb_out, cb_len);
}
/* Rate matching */
if (rm_turbo_tx(harq_process->pdsch_w_buff_c[i], harq_process->w_buff_size,
(uint8_t*) q->cb_out, 3 * cb_len + 12,
&e_bits[wp], n_e, rv_idx))
{
fprintf(stderr, "Error in rate matching\n");
return LIBLTE_ERROR;
}
/* Set read/write pointers */
rp += (rlen - F);
wp += n_e;
}
INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
ret = LIBLTE_SUCCESS;
} else {
fprintf(stderr, "Must call pdsch_set_rnti() to set the encoder/decoder RNTI\n");
}
}
return ret;
}
/** Converts the PDSCH data bits to symbols mapped to the slot ready for transmission
*/
int pdsch_encode(pdsch_t *q, uint8_t *data, cf_t *sf_symbols[MAX_PORTS], uint32_t subframe,
pdsch_harq_t *harq_process, uint32_t rv_idx)
{
int i;
uint32_t nof_symbols, nof_bits, nof_bits_e;
/* Set pointers for layermapping & precoding */
cf_t *x[MAX_LAYERS];
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
data != NULL &&
subframe < 10 &&
harq_process != NULL)
{
if (q->rnti_is_set) {
for (i=0;i<q->cell.nof_ports;i++) {
if (sf_symbols[i] == NULL) {
return LIBLTE_ERROR_INVALID_INPUTS;
}
}
nof_bits = harq_process->mcs.tbs;
nof_symbols = harq_process->prb_alloc.re_sf[subframe];
nof_bits_e = nof_symbols * lte_mod_bits_x_symbol(harq_process->mcs.mod);
if (harq_process->mcs.tbs == 0) {
return LIBLTE_ERROR_INVALID_INPUTS;
}
if (nof_bits > nof_bits_e) {
fprintf(stderr, "Invalid code rate %.2f\n", (float) nof_bits / nof_bits_e);
return LIBLTE_ERROR_INVALID_INPUTS;
}
if (nof_symbols > q->max_symbols) {
fprintf(stderr,
"Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n",
nof_symbols, q->max_symbols, q->cell.nof_prb);
return LIBLTE_ERROR_INVALID_INPUTS;
}
INFO("Encoding PDSCH SF: %d, Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n",
subframe, lte_mod_string(harq_process->mcs.mod), nof_bits, nof_symbols, nof_bits_e, rv_idx);
/* number of layers equals number of ports */
for (i = 0; i < q->cell.nof_ports; i++) {
x[i] = q->pdsch_x[i];
}
memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports));
if (pdsch_encode_tb(q, data, nof_bits, nof_bits_e, harq_process, rv_idx)) {
fprintf(stderr, "Error encoding TB\n");
return LIBLTE_ERROR;
}
scrambling_b_offset(&q->seq_pdsch[subframe], (uint8_t*) q->pdsch_e, 0, nof_bits_e);
mod_modulate(&q->mod[harq_process->mcs.mod], (uint8_t*) q->pdsch_e, q->pdsch_d, nof_bits_e);
/* TODO: only diversity supported */
if (q->cell.nof_ports > 1) {
layermap_diversity(q->pdsch_d, x, q->cell.nof_ports, nof_symbols);
precoding_diversity(&q->precoding, x, q->pdsch_symbols, q->cell.nof_ports,
nof_symbols / q->cell.nof_ports);
} else {
memcpy(q->pdsch_symbols[0], q->pdsch_d, nof_symbols * sizeof(cf_t));
}
/* mapping to resource elements */
for (i = 0; i < q->cell.nof_ports; i++) {
pdsch_put(q, q->pdsch_symbols[i], sf_symbols[i], &harq_process->prb_alloc, subframe);
}
ret = LIBLTE_SUCCESS;
} else {
fprintf(stderr, "Must call pdsch_set_rnti() to set the encoder/decoder RNTI\n");
}
}
return ret;
}