You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

273 lines
11 KiB
C

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_RRC_UE_H
#define SRSRAN_RRC_UE_H
#include "mac_controller.h"
#include "rrc.h"
#include "srsran/adt/pool/batch_mem_pool.h"
#include "srsran/asn1/rrc/uecap.h"
#include "srsran/interfaces/enb_phy_interfaces.h"
#include "srsran/interfaces/pdcp_interface_types.h"
namespace srsenb {
class rrc::ue
{
public:
class rrc_mobility;
class rrc_endc;
enum activity_timeout_type_t {
MSG3_RX_TIMEOUT = 0, ///< Msg3 has its own timeout to quickly remove fake UEs from random PRACHs
UE_INACTIVITY_TIMEOUT, ///< UE inactivity timeout (usually bigger than reestablishment timeout)
MSG5_RX_TIMEOUT_T300, ///< UE timeout for receiving RRCConnectionSetupComplete
MSG5_RX_TIMEOUT_T301, ///< UE timeout for receiving RRCReestablishmentComplete
nulltype
};
ue(rrc* outer_rrc, uint16_t rnti, const sched_interface::ue_cfg_t& ue_cfg);
~ue();
int init();
bool is_connected();
bool is_idle();
std::string to_string(const activity_timeout_type_t& type);
void set_activity_timeout(activity_timeout_type_t type);
void set_activity(bool enabled = true);
void set_radiolink_dl_state(bool crc_res);
void set_radiolink_ul_state(bool crc_res);
void activity_timer_expired(const activity_timeout_type_t type);
void rlf_timer_expired(uint32_t timeout_id);
void max_rlc_retx_reached();
void protocol_failure();
void deactivate_bearers() { mac_ctrl.set_radio_bearer_state(mac_lc_ch_cfg_t::IDLE); }
// Init PUCCH resources for PCell
bool init_pucch();
rrc_state_t get_state();
void get_metrics(rrc_ue_metrics_t& ue_metrics) const;
///< Helper to access a cell cfg based on ue_cc_idx
enb_cell_common* get_ue_cc_cfg(uint32_t ue_cc_idx);
/// List of results a RRC procedure may produce.
enum class procedure_result_code {
none,
activity_timeout,
error_mme_not_connected,
error_unknown_rnti,
radio_conn_with_ue_lost,
msg3_timeout,
fail_in_radio_interface_proc,
unspecified
};
void send_connection_setup();
void send_connection_reest(uint8_t ncc);
void send_connection_reject(procedure_result_code cause);
void send_connection_release();
void send_connection_reest_rej(procedure_result_code cause);
void send_connection_reconf(srsran::unique_byte_buffer_t sdu = {},
bool phy_cfg_updated = true,
srsran::const_byte_span nas_pdu = {});
void send_security_mode_command();
void send_ue_cap_enquiry(const std::vector<asn1::rrc::rat_type_opts::options>& rats);
void send_ue_info_req();
void parse_ul_dcch(uint32_t lcid, srsran::unique_byte_buffer_t pdu);
/// List of generated RRC events.
enum class rrc_event_type {
con_request,
con_setup,
con_setup_complete,
con_reconf,
con_reconf_complete,
con_reest_req,
con_reest,
con_reest_complete,
con_reest_reject,
con_reject,
con_release
};
void handle_rrc_con_req(asn1::rrc::rrc_conn_request_s* msg);
void handle_rrc_con_setup_complete(asn1::rrc::rrc_conn_setup_complete_s* msg, srsran::unique_byte_buffer_t pdu);
void handle_rrc_con_reest_req(asn1::rrc::rrc_conn_reest_request_s* msg);
void handle_rrc_con_reest_complete(asn1::rrc::rrc_conn_reest_complete_s* msg, srsran::unique_byte_buffer_t pdu);
void handle_rrc_reconf_complete(asn1::rrc::rrc_conn_recfg_complete_s* msg, srsran::unique_byte_buffer_t pdu);
void handle_security_mode_complete(asn1::rrc::security_mode_complete_s* msg);
void handle_security_mode_failure(asn1::rrc::security_mode_fail_s* msg);
int handle_ue_cap_info(asn1::rrc::ue_cap_info_s* msg);
void handle_ue_init_ctxt_setup_req(const asn1::s1ap::init_context_setup_request_s& msg);
bool handle_ue_ctxt_mod_req(const asn1::s1ap::ue_context_mod_request_s& msg);
void handle_ue_info_resp(const asn1::rrc::ue_info_resp_r9_s& msg, srsran::unique_byte_buffer_t pdu);
void set_bitrates(const asn1::s1ap::ue_aggregate_maximum_bitrate_s& rates);
/// Helper to check UE ERABs
bool has_erab(uint32_t erab_id) const { return bearer_list.get_erabs().count(erab_id) > 0; }
int get_erab_addr_in(uint16_t erab_id, transp_addr_t& addr_in, uint32_t& teid_in) const;
bool release_erabs();
int release_erab(uint32_t erab_id);
int setup_erab(uint16_t erab_id,
const asn1::s1ap::erab_level_qos_params_s& qos_params,
srsran::const_span<uint8_t> nas_pdu,
const asn1::bounded_bitstring<1, 160, true, true>& addr,
uint32_t gtpu_teid_out,
asn1::s1ap::cause_c& cause);
int modify_erab(uint16_t erab_id,
const asn1::s1ap::erab_level_qos_params_s& qos_params,
srsran::const_span<uint8_t> nas_pdu,
asn1::s1ap::cause_c& cause);
// Getters for PUCCH resources
int get_cqi(uint16_t* pmi_idx, uint16_t* n_pucch, uint32_t ue_cc_idx);
int get_ri(uint32_t m_ri, uint16_t* ri_idx);
bool is_allocated() const;
bool is_crnti_set() const { return mac_ctrl.is_crnti_set(); }
/**
* Sends the CCCH message to the underlying layer and optionally encodes it as an octet string if a valid string
* pointer is passed.
*/
void send_dl_ccch(asn1::rrc::dl_ccch_msg_s* dl_ccch_msg, std::string* octet_str = nullptr);
/**
* Sends the DCCH message to the underlying layer and optionally encodes it as an octet string if a valid string
* pointer is passed.
*/
bool send_dl_dcch(const asn1::rrc::dl_dcch_msg_s* dl_dcch_msg,
srsran::unique_byte_buffer_t pdu = srsran::unique_byte_buffer_t(),
std::string* octet_str = nullptr);
void save_ul_message(srsran::unique_byte_buffer_t pdu) { last_ul_msg = std::move(pdu); }
const ue_cell_ded_list& get_cell_list() const { return ue_cell_list; }
uint16_t rnti = 0;
rrc* parent = nullptr;
bool connect_notified = false;
unique_rnti_ptr<rrc_mobility> mobility_handler;
unique_rnti_ptr<rrc_endc> endc_handler;
bool is_csfb = false;
private:
srsran::unique_timer activity_timer; // for basic DL/UL activity timeout
/// Radio link failure handling uses distinct timers for PHY (DL and UL) and RLC signaled RLF
srsran::unique_timer phy_dl_rlf_timer; // can be stopped through recovered DL activity
srsran::unique_timer phy_ul_rlf_timer; // can be stopped through recovered UL activity
srsran::unique_timer rlc_rlf_timer; // can only be stoped through UE reestablishment
/// cached ASN1 fields for RRC config update checking, and ease of context transfer during HO
ue_var_cfg_t current_ue_cfg;
asn1::rrc::establishment_cause_e establishment_cause;
// S-TMSI for this UE
bool has_tmsi = false;
uint32_t m_tmsi = 0;
uint8_t mmec = 0;
// state
uint32_t rlf_cnt = 0;
uint8_t transaction_id = 0;
rrc_state_t state = RRC_STATE_IDLE;
std::map<uint16_t, srsran::pdcp_lte_state_t> old_reest_pdcp_state = {};
bool rlf_info_pending = false;
asn1::s1ap::ue_aggregate_maximum_bitrate_s bitrates;
bool eutra_capabilities_unpacked = false;
asn1::rrc::ue_eutra_cap_s eutra_capabilities;
srsran::rrc_ue_capabilities_t ue_capabilities;
const static uint32_t UE_PCELL_CC_IDX = 0;
// consecutive KO counter for DL and UL
uint32_t consecutive_kos_dl = 0;
uint32_t consecutive_kos_ul = 0;
ue_cell_ded_list ue_cell_list;
bearer_cfg_handler bearer_list;
security_cfg_handler ue_security_cfg;
/// Cached message of the last uplink message.
srsran::unique_byte_buffer_t last_ul_msg;
/// Connection release result.
procedure_result_code con_release_result = procedure_result_code::none;
// controllers
mac_controller mac_ctrl;
/// Helper to fill cell_ded_list with SCells provided in the eNB config
void update_scells();
///< UE's Physical layer dedicated configuration
phy_interface_rrc_lte::phy_rrc_cfg_list_t phy_rrc_dedicated_list = {};
/**
* Setups the PCell physical layer common configuration of the UE from the SIB2 message. This methods is designed to
* be called from the constructor.
*
* @param config ASN1 Common SIB struct carrying the common physical layer parameters
*/
void apply_setup_phy_common(const asn1::rrc::rr_cfg_common_sib_s& config, bool update_phy);
/**
* Setups the PCell physical layer dedicated configuration of the UE. This method shall be called from the
* connection setup only.
*
* @param phys_cfg_ded ASN1 Physical layer configuration dedicated
*/
void apply_setup_phy_config_dedicated(const asn1::rrc::phys_cfg_ded_s& phys_cfg_ded);
/**
* Reconfigures the PCell and SCell physical layer dedicated configuration of the UE. This method shall be called
* from the connection reconfiguration. `apply_setup_phy_config` shall not be called before/after. It automatically
* parses the PCell and SCell reconfiguration.
*
* @param reconfig_r8 ASN1 reconfiguration message
*/
void apply_reconf_phy_config(const asn1::rrc::rrc_conn_recfg_r8_ies_s& reconfig_r8, bool update_phy);
/**
* Reconfigures PDCP bearers
* @param srbs_to_add SRBs to add
*/
void apply_pdcp_srb_updates(const asn1::rrc::rr_cfg_ded_s& pending_rr_cfg);
void apply_pdcp_drb_updates(const asn1::rrc::rr_cfg_ded_s& pending_rr_cfg);
void apply_rlc_rb_updates(const asn1::rrc::rr_cfg_ded_s& pending_rr_cfg);
/// Find UE whose Handover source identity matches the passed arguments.
ue* find_handover_source_ue(uint16_t old_rnti, uint32_t old_pci);
}; // class ue
} // namespace srsenb
#endif // SRSRAN_RRC_UE_H