You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

448 lines
13 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef UEPHYRECV_H
#define UEPHYRECV_H
#include <map>
#include <pthread.h>
#include "srslte/srslte.h"
#include "srslte/common/log.h"
#include "srslte/common/threads.h"
#include "srslte/common/thread_pool.h"
#include "srslte/common/tti_sync_cv.h"
#include "srslte/radio/radio_multi.h"
#include "phy/prach.h"
#include "phy/phch_worker.h"
#include "phy/phch_common.h"
#include "srslte/interfaces/ue_interfaces.h"
namespace srsue {
typedef _Complex float cf_t;
class phch_recv : public thread, public chest_feedback_itf
{
public:
phch_recv();
~phch_recv();
void init(srslte::radio_multi* radio_handler, mac_interface_phy *mac,rrc_interface_phy *rrc,
prach *prach_buffer, srslte::thread_pool *_workers_pool,
phch_common *_worker_com, srslte::log* _log_h, srslte::log *_log_phy_lib_h, uint32_t nof_rx_antennas, uint32_t prio, int sync_cpu_affinity = -1);
void stop();
void radio_overflow();
// RRC interface for controling the SYNC state
phy_interface_rrc::cell_search_ret_t cell_search(phy_interface_rrc::phy_cell_t *cell);
bool cell_select(phy_interface_rrc::phy_cell_t *cell);
bool cell_is_camping();
// RRC interface for controlling the neighbour cell measurement
void meas_reset();
int meas_start(uint32_t earfcn, int pci);
int meas_stop(uint32_t earfcn, int pci);
// from chest_feedback_itf
void in_sync();
void out_of_sync();
void set_cfo(float cfo);
void set_time_adv_sec(float time_adv_sec);
void get_current_cell(srslte_cell_t *cell, uint32_t *earfcn = NULL);
uint32_t get_current_tti();
// From UE configuration
void set_agc_enable(bool enable);
void set_earfcn(std::vector<uint32_t> earfcn);
void force_freq(float dl_freq, float ul_freq);
// Other functions
const static int MUTEX_X_WORKER = 4;
double set_rx_gain(double gain);
int radio_recv_fnc(cf_t *data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t *rx_time);
int scell_recv_fnc(cf_t *data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t *rx_time);
private:
// Class to run cell search
class search {
public:
typedef enum {CELL_NOT_FOUND, CELL_FOUND, ERROR, TIMEOUT} ret_code;
~search();
void init(cf_t *buffer[SRSLTE_MAX_PORTS], srslte::log *log_h, uint32_t nof_rx_antennas, phch_recv *parent);
void reset();
float get_last_cfo();
7 years ago
void set_agc_enable(bool enable);
ret_code run(srslte_cell_t *cell);
private:
phch_recv *p;
srslte::log *log_h;
cf_t *buffer[SRSLTE_MAX_PORTS];
srslte_ue_cellsearch_t cs;
srslte_ue_mib_sync_t ue_mib_sync;
int force_N_id_2;
};
// Class to synchronize system frame number
class sfn_sync {
public:
typedef enum {IDLE, SFN_FOUND, SFX0_FOUND, SFN_NOFOUND, ERROR} ret_code;
~sfn_sync();
void init(srslte_ue_sync_t *ue_sync, cf_t *buffer[SRSLTE_MAX_PORTS], srslte::log *log_h, uint32_t nof_subframes = SFN_SYNC_NOF_SUBFRAMES);
void reset();
bool set_cell(srslte_cell_t cell);
ret_code run_subframe(srslte_cell_t *cell, uint32_t *tti_cnt, bool sfidx_only = false);
private:
const static int SFN_SYNC_NOF_SUBFRAMES = 100;
uint32_t cnt;
uint32_t timeout;
srslte::log *log_h;
srslte_ue_sync_t *ue_sync;
cf_t *buffer[SRSLTE_MAX_PORTS];
srslte_ue_mib_t ue_mib;
};
// Class to perform cell measurements
class measure {
// TODO: This class could early stop once the variance between the last N measurements is below 3GPP requirements
public:
typedef enum {IDLE, MEASURE_OK, ERROR} ret_code;
~measure();
void init(cf_t *buffer[SRSLTE_MAX_PORTS], srslte::log *log_h,
uint32_t nof_rx_antennas, uint32_t nof_subframes = RSRP_MEASURE_NOF_FRAMES);
void reset();
void set_cell(srslte_cell_t cell);
ret_code run_subframe(uint32_t sf_idx);
ret_code run_subframe_sync(srslte_ue_sync_t *ue_sync, uint32_t sf_idx);
ret_code run_multiple_subframes(cf_t *buffer, uint32_t offset, uint32_t sf_idx, uint32_t nof_sf);
float rssi();
float rsrp();
float rsrq();
float snr();
uint32_t frame_st_idx();
void set_rx_gain_offset(float rx_gain_offset);
private:
srslte::log *log_h;
srslte_ue_dl_t ue_dl;
cf_t *buffer[SRSLTE_MAX_PORTS];
uint32_t cnt;
uint32_t nof_subframes;
uint32_t current_prb;
float rx_gain_offset;
float mean_rsrp, mean_rsrq, mean_snr, mean_rssi;
uint32_t final_offset;
const static int RSRP_MEASURE_NOF_FRAMES = 5;
};
// Class to receive secondary cell
class scell_recv {
public:
const static int MAX_CELLS = 8;
typedef struct {
uint32_t pci;
float rsrp;
float rsrq;
uint32_t offset;
} cell_info_t;
void init(srslte::log *log_h, bool sic_pss_enabled, uint32_t max_sf_window);
void deinit();
void reset();
int find_cells(cf_t *input_buffer, float rx_gain_offset, srslte_cell_t current_cell, uint32_t nof_sf, cell_info_t found_cells[MAX_CELLS]);
private:
cf_t *sf_buffer[SRSLTE_MAX_PORTS];
srslte::log *log_h;
srslte_sync_t sync_find;
bool sic_pss_enabled;
uint32_t current_fft_sz;
measure measure_p;
};
/* TODO: Intra-freq measurements can be improved by capturing 200 ms length signal and run cell search +
* measurements offline using sync object and finding multiple cells for each N_id_2
*/
// Class to perform intra-frequency measurements
class intra_measure : public thread {
public:
~intra_measure();
void init(phch_common *common, rrc_interface_phy *rrc, srslte::log *log_h);
void stop();
void add_cell(int pci);
void rem_cell(int pci);
void set_primay_cell(uint32_t earfcn, srslte_cell_t cell);
void clear_cells();
int get_offset(uint32_t pci);
void write(uint32_t tti, cf_t *data, uint32_t nsamples);
private:
void run_thread();
const static int INTRA_FREQ_MEAS_PRIO = DEFAULT_PRIORITY + 5;
scell_recv scell;
rrc_interface_phy *rrc;
srslte::log *log_h;
phch_common *common;
uint32_t current_earfcn;
uint32_t current_sflen;
srslte_cell_t primary_cell;
std::vector<int> active_pci;
srslte::tti_sync_cv tti_sync;
cf_t *search_buffer;
scell_recv::cell_info_t info[scell_recv::MAX_CELLS];
bool running;
bool receive_enabled;
bool receiving;
uint32_t measure_tti;
uint32_t receive_cnt;
srslte_ringbuffer_t ring_buffer;
};
// 36.133 9.1.2.1 for band 7
const static float ABSOLUTE_RSRP_THRESHOLD_DBM = -125;
std::vector<uint32_t> earfcn;
void reset();
void radio_error();
void set_ue_sync_opts(srslte_ue_sync_t *q, float cfo);
void run_thread();
float get_tx_cfo();
void set_sampling_rate();
bool set_frequency();
bool set_cell();
uint32_t new_earfcn;
srslte_cell_t new_cell;
bool radio_is_overflow;
bool radio_overflow_return;
bool running;
// Objects for internal use
measure measure_p;
search search_p;
sfn_sync sfn_p;
intra_measure intra_freq_meas;
uint32_t current_sflen;
int next_offset;
uint32_t nof_rx_antennas;
// Pointers to other classes
mac_interface_phy *mac;
rrc_interface_phy *rrc;
srslte::log *log_h;
srslte::log *log_phy_lib_h;
srslte::thread_pool *workers_pool;
srslte::radio_multi *radio_h;
phch_common *worker_com;
prach *prach_buffer;
// Object for synchronization of the primary cell
srslte_ue_sync_t ue_sync;
// Buffer for primary cell samples
cf_t *sf_buffer[SRSLTE_MAX_PORTS];
// Sync metrics
sync_metrics_t metrics;
// in-sync / out-of-sync counters
uint32_t out_of_sync_cnt;
uint32_t in_sync_cnt;
const static uint32_t NOF_OUT_OF_SYNC_SF = 200;
const static uint32_t NOF_IN_SYNC_SF = 100;
// State machine for SYNC thread
class sync_state {
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state() {
pthread_mutex_lock(&inside);
cur_state = next_state;
pthread_cond_broadcast(&cvar);
pthread_mutex_unlock(&inside);
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true) {
pthread_mutex_lock(&inside);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
pthread_mutex_unlock(&inside);
}
void force_sfn_sync() {
pthread_mutex_lock(&inside);
next_state = SFN_SYNC;
pthread_mutex_unlock(&inside);
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle() {
pthread_mutex_lock(&outside);
go_state(IDLE);
pthread_mutex_unlock(&outside);
}
void run_cell_search() {
pthread_mutex_lock(&outside);
go_state(CELL_SEARCH);
wait_state_change(CELL_SEARCH);
pthread_mutex_unlock(&outside);
}
void run_sfn_sync() {
pthread_mutex_lock(&outside);
go_state(SFN_SYNC);
wait_state_change(SFN_SYNC);
pthread_mutex_unlock(&outside);
}
/* Helpers below this */
bool is_idle() {
return cur_state == IDLE;
}
bool is_camping() {
return cur_state == CAMPING;
}
const char *to_string() {
switch(cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() {
pthread_mutex_init(&inside, NULL);
pthread_mutex_init(&outside, NULL);
pthread_cond_init(&cvar, NULL);
cur_state = IDLE;
next_state = IDLE;
}
private:
void go_state(state_t s) {
pthread_mutex_lock(&inside);
next_state = s;
while(cur_state != s) {
pthread_cond_wait(&cvar, &inside);
}
pthread_mutex_unlock(&inside);
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_change(state_t prev_state) {
pthread_mutex_lock(&inside);
while(cur_state == prev_state) {
pthread_cond_wait(&cvar, &inside);
}
pthread_mutex_unlock(&inside);
}
state_t cur_state, next_state;
pthread_mutex_t inside, outside;
pthread_cond_t cvar;
};
pthread_mutex_t rrc_mutex;
sync_state phy_state;
search::ret_code cell_search_ret;
// Sampling rate mode (find is 1.96 MHz, camp is the full cell BW)
enum {
SRATE_NONE=0, SRATE_FIND, SRATE_CAMP
} srate_mode;
float current_srate;
// This is the primary cell
srslte_cell_t cell;
bool started;
float time_adv_sec;
uint32_t tti;
bool do_agc;
uint32_t nof_tx_mutex;
uint32_t tx_mutex_cnt;
float ul_dl_factor;
int current_earfcn;
uint32_t cellsearch_earfcn_index;
float dl_freq;
float ul_freq;
};
} // namespace srsue
#endif // UEPHYRECV_H